IMPROVED BOUNDS ON NEGATIVITY OF SUPERPOSITIONS

被引:0
|
作者
Ma, Zhi-Hao [1 ,6 ]
Chen, Zhi-Hua [2 ]
Han, Shuai [3 ]
Fei, Shao-Ming [4 ]
Severini, Simone [5 ,6 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
[2] Zhejiang Univ Technol, Dept Sci, Zhijiang Coll, Hangzhou 310024, Zhejiang, Peoples R China
[3] Shanghai Jiao Tong Univ, SJTU Coll, Shanghai 200240, Peoples R China
[4] Capital Normal Univ, Dept Math, Beijing 100037, Peoples R China
[5] UCL, Dept Comp Sci, London WC1E 6BT, England
[6] UCL, Dept Phys & Astron, London WC1E 6BT, England
关键词
Superpositions; Pure states; Negativity;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider an alternative formula for the negativity based on a simple generalization of the concurrence. We use the formula to bound the amount of entanglement in a superposition of two bipartite pure states of arbitrary dimension. Various examples indicate that our bounds are tighter than the previously known results.
引用
收藏
页码:983 / 988
页数:6
相关论文
共 50 条
  • [1] Bounds on negativity of superpositions
    Ou, Yong-Cheng
    Fan, Heng
    [J]. PHYSICAL REVIEW A, 2007, 76 (02):
  • [2] A tight bound on negativity of superpositions
    Ma, K. -H.
    Yu, C. S.
    Song, H. S.
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2010, 59 (02): : 317 - 320
  • [3] A tight bound on negativity of superpositions
    K.-H. Ma
    C. S. Yu
    H. S. Song
    [J]. The European Physical Journal D, 2010, 59 : 317 - 320
  • [4] Bounds on the multipartite entanglement of superpositions
    Song, Wei
    Liu, Nai-Le
    Chen, Zeng-Bing
    [J]. PHYSICAL REVIEW A, 2007, 76 (05):
  • [5] Bounds for imaginarity of quantum superpositions
    Qi, Xianfei
    [J]. LASER PHYSICS LETTERS, 2023, 20 (10)
  • [6] Tight bounds on the concurrence of quantum superpositions
    Niset, J.
    Cerf, N. J.
    [J]. PHYSICAL REVIEW A, 2007, 76 (04):
  • [7] Bounds for coherence of quantum superpositions in high dimension
    Qiu-Ling Yue
    Fei Gao
    Qiao-Yan Wen
    Wei-Wei Zhang
    [J]. Scientific Reports, 7
  • [8] Bounds for coherence of quantum superpositions in high dimension
    Yue, Qiu-Ling
    Gao, Fei
    Wen, Qiao-Yan
    Zhang, Wei-Wei
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [9] UNIVERSAL APPROXIMATION BOUNDS FOR SUPERPOSITIONS OF A SIGMOIDAL FUNCTION
    BARRON, AR
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (03) : 930 - 945
  • [10] Bounds for minimum semidefinite rank from superpositions and cutsets
    Beagley, Jonathan
    Mitchell, Lon H.
    Narayan, Sivaram K.
    Radzwion, Eileen
    Rimer, Sara P.
    Tomasino, Rachael
    Wolfe, Jennifer
    Zimmer, Andrew M.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (10) : 4041 - 4061