Magnetoconductance effect in organic light-emitting devices

被引:6
|
作者
Zhang Yong [1 ]
Liu Ya-Li [1 ]
Jiao Wei [1 ]
Chen Lin [1 ]
Xiong Zu-Hong [1 ]
机构
[1] Southwest Univ, Sch Phys Sci & Technol, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
organic light-emitting diode; magnetoconductance; bipolaron; electron-hole pair; MAGNETORESISTANCE;
D O I
10.7498/aps.61.117106
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Organic light-emitting diode (OLED) based on tris-(8-hydroxyquinoline) aluminum(III) (Alq(3)) is fabricated, and its magnetoconductance (MC) effects are measured at different bias voltages. When the bias voltage is small, the OLED exhibits apparently a negative MC effect. After the bias voltage is increased, the MC value changes from negative to positive, displaying a negative-positive inversion. The MC effects in N, N'-Di(naphthalen-1-yl)-N, N' diphenyl-benzidine (NPB) and Copper phthalocyanine (CuPc) unipolar devices show that the negative MC effect in OLED comes from the CuPc layer in device. The MC effect of bipolar current can be explained using the electron-hole pair model. The MC effect of unipolar current can be attributed to the polaron-bipolaron transition in device. The positive-negative MC inversion in OLED results from the simultaneous contributions of the above two mechanisms during the variation of the injection current.
引用
下载
收藏
页数:6
相关论文
共 19 条
  • [1] Electron-hole pair mechanism for the magnetic field effect in organic light emitting diodes based on poly(paraphenylene vinylene)
    Bagnich, S. A.
    Niedermeier, U.
    Melzer, C.
    Sarfert, W.
    von Seggern, H.
    [J]. JOURNAL OF APPLIED PHYSICS, 2009, 106 (11)
  • [2] Inversion of magnetoresistance in organic semiconductors
    Bergeson, J. D.
    Prigodin, V. N.
    Lincoln, D. M.
    Epstein, A. J.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (06)
  • [3] Separating positive and negative magnetoresistance in organic semiconductor devices
    Bloom, F. L.
    Wagemans, W.
    Kemerink, M.
    Koopmans, B.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (25)
  • [4] Correspondence of the sign change in organic magnetoresistance with the onset of bipolar charge transport
    Bloom, F. L.
    Wagemans, W.
    Kemerink, M.
    Koopmans, B.
    [J]. APPLIED PHYSICS LETTERS, 2008, 93 (26)
  • [5] Bipolaron mechanism for organic magnetoresistance
    Bobbert, P. A.
    Nguyen, T. D.
    van Oost, F. W. A.
    Koopmans, B.
    Wohlgenannt, M.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (21)
  • [6] The role of magnetic fields on the transport and efficiency of aluminum tris(8-hydroxyquinoline) based organic light emitting diodes
    Desai, P.
    Shakya, P.
    Kreouzis, T.
    Gillin, W. P.
    [J]. JOURNAL OF APPLIED PHYSICS, 2007, 102 (07)
  • [7] Magnetic field effects on the electroluminescence of organic light emitting devices: A tool to indicate the carrier mobility
    Ding, B. F.
    Yao, Y.
    Sun, Z. Y.
    Wu, C. Q.
    Gao, X. D.
    Wang, Z. J.
    Ding, X. M.
    Choy, W. C. H.
    Hou, X. Y.
    [J]. APPLIED PHYSICS LETTERS, 2010, 97 (16)
  • [8] Magnetic field effects on the conductivity of organic bipolar and unipolar devices at room temperature
    Gomez, J. A.
    Nueesch, F.
    Zuppiroli, L.
    Graeff, C. F. O.
    [J]. SYNTHETIC METALS, 2010, 160 (3-4) : 317 - 319
  • [9] Tuning magnetoresistance between positive and negative values in organic semiconductors
    Hu, Bin
    Wu, Yue
    [J]. NATURE MATERIALS, 2007, 6 (12) : 985 - 991
  • [10] The role of magnetic fields on the efficiency of OLED of double quantum well structures
    Jiang Wen-Long
    Meng Zhao-Hui
    Cong Lin
    Wang Jin
    Wang Li-Zhong
    Han Qiang
    Meng Fan-Chao
    Gao Yong-Hui
    [J]. ACTA PHYSICA SINICA, 2010, 59 (09) : 6642 - 6646