On dynamics of Out(Fn) on PSL2(C) characters

被引:23
|
作者
Minsky, Yair N. [1 ]
机构
[1] Yale Univ, Dept Math, New Haven, CT 06520 USA
关键词
DEFORMATION SPACES; BOUNDARIES; EMBEDDINGS; ELEMENTS; CUSPS;
D O I
10.1007/s11856-012-0086-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce and study an open set of PSL2(a",) characters of a nonabelian free group, on which the action of the outer automorphism group is properly discontinuous, and which is strictly larger than the set of discrete, faithful convex-cocompact (i.e. Schottky) characters. This implies, in particular, that the outer automorphism group does not act ergodically on the set of characters with dense image. Hence there is a difference between the geometric (discrete vs. dense) decomposition of the characters, and a natural dynamical decomposition.
引用
收藏
页码:47 / 70
页数:24
相关论文
共 50 条
  • [1] On dynamics of Out(Fn) on PSL2(ℂ) characters
    Yair N. Minsky
    Israel Journal of Mathematics, 2013, 193 : 47 - 70
  • [2] The variety of characters in PSL2(C)
    Heusener, M
    Porti, J
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2004, 10 : 221 - 237
  • [3] THE MODULAR ACTION ON PSL2(R)-CHARACTERS IN GENUS 2
    Marche, Julien
    Wolff, Maxime
    DUKE MATHEMATICAL JOURNAL, 2016, 165 (02) : 371 - 412
  • [4] A PSL2 (C) Casson invariant
    Curtis, CL
    Geometry and Topology of Manifolds, 2005, 47 : 51 - 61
  • [5] Hasse principle for PSL2(Z) and PSL2(Fp)
    Ono, T
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1998, 74 (08) : 130 - 131
  • [6] Equidistribution of cusp forms on PSL2(Z)backslash PSL2(R)
    Jakobson, D
    ANNALES DE L INSTITUT FOURIER, 1997, 47 (03) : 967 - &
  • [7] Cohomology of PSL2(q)
    Saunders, Jack
    JOURNAL OF ALGEBRA, 2022, 595 : 347 - 379
  • [8] THE GENUS OF PSL2(Q)
    GLOVER, H
    SJERVE, D
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1987, 380 : 59 - 86
  • [9] The space of geometric limits of abelian subgroups of PSL2(C)
    Baik, Hyungryul
    Clavier, Lucien
    HIROSHIMA MATHEMATICAL JOURNAL, 2016, 46 (01) : 1 - 36
  • [10] Free products of cyclic subgroups in the group PSL2(C)
    Mateiko, OM
    Tavgen', OI
    MATHEMATICAL NOTES, 2000, 67 (5-6) : 778 - 785