Spurious finite-size instabilities in nuclear energy density functionals: Spin channel

被引:16
|
作者
Pastore, A. [1 ]
Tarpanov, D. [2 ,3 ]
Davesne, D. [4 ,5 ,6 ]
Navarro, J. [7 ]
机构
[1] CEA, DAM, DIF, F-91297 Arpajon, France
[2] Univ Warsaw, Fac Phys, Inst Theoret Phys, PL-02093 Warsaw, Poland
[3] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BG-1784 Sofia, Bulgaria
[4] Univ Lyon, F-69003 Lyon, France
[5] Univ Lyon 1, F-69622 Villeurbanne, France
[6] CNRS, Inst Phys Nucl Lyon, IN2P3, UMR 5822, Lyon, France
[7] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain
来源
PHYSICAL REVIEW C | 2015年 / 92卷 / 02期
基金
芬兰科学院;
关键词
MEAN-FIELD;
D O I
10.1103/PhysRevC.92.024305
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Background: It has been recently shown that some Skyrme functionals can lead to nonconverging results in the calculation of some properties of atomic nuclei. A previous study has pointed out a possible link between these convergence problems and the appearance of finite-size instabilities in symmetric nuclear matter (SNM) around saturation density. Purpose: We show that the finite-size instabilities not only affect the ground-state properties of atomic nuclei, but they can also influence the calculations of vibrational excited states in finite nuclei. Method: We perform systematic fully-self consistent random phase approximation (RPA) calculations in spherical doubly magic nuclei. We employ several Skyrme functionals and vary the isoscalar and isovector coupling constants of the time-odd term s . Delta s. We determine critical values of these coupling constants beyond which the RPA calculations do not converge because the RPA stability matrix becomes nonpositive. Results: By comparing the RPA calculations of atomic nuclei with those performed for SNM we establish a correspondence between the critical densities in the infinite system and the critical coupling constants for which the RPA calculations do not converge. Conclusions: We find a quantitative stability criterion to detect finite-size instabilities related to the spin s . Delta s term of a functional. This criterion could be easily implemented in the standard fitting protocols to fix the coupling constants of the Skyrme functional.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Spurious finite-size instabilities in nuclear energy density functionals
    Hellemans, V.
    Pastore, A.
    Duguet, T.
    Bennaceur, K.
    Davesne, D.
    Meyer, J.
    Bender, M.
    Heenen, P. -H.
    PHYSICAL REVIEW C, 2013, 88 (06):
  • [2] Finite-Size Instabilities in Nuclear Energy Density Functionals
    Hellemans, V.
    Heenen, P. -H.
    Bender, M.
    NUCLEAR STRUCTURE AND DYNAMICS '12, 2012, 1491 : 242 - 245
  • [3] Spurious finite-size instabilities with Gogny-type interactions
    Martini, M.
    De Pace, A.
    Bennaceur, K.
    EUROPEAN PHYSICAL JOURNAL A, 2019, 55 (09):
  • [4] Spurious finite-size instabilities with Gogny-type interactions
    M. Martini
    A. De Pace
    K. Bennaceur
    The European Physical Journal A, 2019, 55
  • [5] Spin constraints on nuclear energy density functionals
    Robledo, L. M.
    Bernard, R. N.
    Bertsch, G. F.
    PHYSICAL REVIEW C, 2014, 89 (02):
  • [6] Finite-size instabilities in finite-range forces
    Gonzalez-Boquera, C.
    Centelles, M.
    Vinas, X.
    Robledo, L. M.
    PHYSICAL REVIEW C, 2021, 103 (06)
  • [7] Finite-size corrections in the spatial contribution to the density of states in nuclear multifragmentation
    Cole, AJ
    Heuer, D
    Charvet, M
    PHYSICAL REVIEW C, 1997, 55 (06): : 2978 - 2984
  • [8] Covariance analysis for energy density functionals and instabilities
    Roca-Maza, X.
    Paar, N.
    Colo, G.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2015, 42 (03)
  • [9] Spin and spin-isospin instabilities in asymmetric nuclear matter at zero and finite temperatures using Skyrme functionals
    Chamel, N.
    Goriely, S.
    PHYSICAL REVIEW C, 2010, 82 (04):
  • [10] Finite-size corrections to the density of states
    Woerner, C. H.
    Munoz, E.
    EUROPEAN JOURNAL OF PHYSICS, 2012, 33 (05) : 1465 - 1472