Digital Twin for Machining Tool Condition Prediction

被引:91
|
作者
Qiao, Qianzhe [1 ]
Wang, Jinjiang [1 ]
Ye, Lunkuan [1 ]
Gao, Robert X. [2 ]
机构
[1] China Univ Petr, Sch Mech & Transportat Engn, Beijing 102249, Peoples R China
[2] Case Western Reserve Univ, Dept Mech & Aerosp Engn, Cleveland, OH 44106 USA
基金
美国国家科学基金会;
关键词
tool system; digital twin; deep learning; FAULT-DIAGNOSIS; FAILURE; SYSTEMS;
D O I
10.1016/j.procir.2019.04.049
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Digital twin introduces new opportunities for predictive maintenance of manufacturing machines which can consider the influence of working condition on cutting tool and contribute to the understanding and application of the predicted results. This paper presents a data-driven model for digital twin, together with a hybrid model prediction method based on deep learning that creates a prediction technique for enhanced machining tool condition prediction. First, a five-dimensional digital twin model is introduced that highlights the performance of the data analytics in model construction. Next, a deep learning technique, termed Deep Stacked GRU (DSGRU), is demonstrated that enables system identification and prediction. Experimental studies using vibration data measured on milling machine tool have shown the effectiveness of the presented digital twin model for tool wear prediction. (C) 2019 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:1388 / 1393
页数:6
相关论文
共 50 条
  • [1] Digital Twin Framework for Lathe Tool Condition Monitoring in Machining of Aluminium 5052
    Kumar, S. Ganesh
    Singh, Bipin Kumar
    Kumar, R. Suresh
    Haldorai, Anandakumar
    [J]. DEFENCE SCIENCE JOURNAL, 2023, 73 (03) : 341 - 350
  • [2] Digital-twin assisted: Fault diagnosis using deep transfer learning for machining tool condition
    Deebak, B. D.
    Al-Turjman, Fadi
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (12) : 10289 - 10316
  • [3] Digital twin-based anomaly detection for real-time tool condition monitoring in machining
    Liu, Zepeng
    Lang, Zi-Qiang
    Gui, Yufei
    Zhu, Yun-Peng
    Laalej, Hatim
    [J]. JOURNAL OF MANUFACTURING SYSTEMS, 2024, 75 : 163 - 173
  • [4] Machining Condition Optimization based on a Digital Twin of Machine Tools
    Jo, Ok Hyun
    Lee, Wonkyun
    Lee, Kang Jae
    [J]. TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2020, 44 (02) : 117 - 125
  • [5] Evaluation of Machine Tool Digital Twin for machining operations in industrial environment
    Armendia, Mikel
    Cugnon, Frederic
    Berglind, Luke
    Ozturk, Erdem
    Gil, Guillermo
    Selmi, Jaouher
    [J]. 17TH CIRP CONFERENCE ON MODELLING OF MACHINING OPERATIONS (17TH CIRP CMMO), 2019, 82 : 231 - 236
  • [6] Digital Twin-Driven Tool Condition Monitoring for the Milling Process
    Natarajan, Sriraamshanjiev
    Thangamuthu, Mohanraj
    Gnanasekaran, Sakthivel
    Rakkiyannan, Jegadeeshwaran
    [J]. SENSORS, 2023, 23 (12)
  • [7] A machining digital twin for hybrid manufacturing
    Dvorak, Jake
    Cornelius, Aaron
    Corson, Greg
    Zameroski, Ross
    Jacobs, Leah
    Penney, Joshua
    Schmitz, Tony
    [J]. MANUFACTURING LETTERS, 2022, 33 : 786 - 793
  • [8] A machining digital twin for hybrid manufacturing
    Dvorak J.
    Cornelius A.
    Corson G.
    Zameroski R.
    Jacobs L.
    Penney J.
    Schmitz T.
    [J]. Manufacturing Letters, 2022, 33 : 786 - 793
  • [9] A machining digital twin for hybrid manufacturing
    Dvorak, Jake
    Cornelius, Aaron
    Corson, Greg
    Zameroski, Ross
    Jacobs, Leah
    Penney, Joshua
    Schmitz, Tony
    [J]. MANUFACTURING LETTERS, 2022, 33 : 786 - 793
  • [10] Tool Path Generation for Turbine Blades Machining With Twin Tool
    Lu, Dun
    Liu, Jun
    Zhao, Wanhua
    Lu, Bingheng
    Wu, Diaodiao
    Song, Dongdong
    Xue, Fei
    Cheng, Bing
    [J]. JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2017, 139 (11):