Real-time Variational Stereo Reconstruction with Applications to Large-Scale Dense SLAM

被引:0
|
作者
Kuschk, Georg [1 ]
Bozic, Aljaz [1 ]
Cremers, Daniel [1 ]
机构
[1] Tech Univ Munich, Dept Comp Sci, Comp Vis Grp, Munich, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an algorithm for dense and direct large-scale visual SLAM that runs in real-time on a commodity notebook. A fast variational dense 3D reconstruction algorithm was developed which robustly integrates data terms from multiple images. This mitigates the effect of the aperture problem and is demonstrated on synthetic and real data. An additional property of the variational reconstruction framework is the ability to integrate sparse depth priors (e.g. from RGB-D sensors or LiDAR data) into the early stages of the visual depth reconstruction, leading to an implicit sensor fusion scheme for a variable number of heterogenous depth sensors. Embedded into a keyframe-based SLAM framework, this results in a memory efficient representation of the scene and therefore (in combination with loop-closure detection and pose tracking via direct image alignment) enables us to densely reconstruct large scenes in real-time. Experimental validation on the KITTI dataset shows that our method can recover large-scale and dense reconstructions of entire street scenes in real-time from a driving car.
引用
收藏
页码:1348 / 1355
页数:8
相关论文
共 50 条
  • [1] Real-time hierarchical stereo Visual SLAM in large-scale environments
    Schleicher, David
    Bergasa, Luis M.
    Ocana, Manuel
    Barea, Rafael
    Lopez, Elena
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2010, 58 (08) : 991 - 1002
  • [2] Real-time stereo visual SLAM in large-scale environments based on SIFT fingerprints
    Schleicher, David
    Bergasa, Luis M.
    Ocana, Manuel
    Barea, Rafael
    Lopez, Elena
    [J]. COMPUTER AIDED SYSTEMS THEORY- EUROCAST 2007, 2007, 4739 : 684 - 691
  • [3] Real-time stereo visual SLAM in large-scale environments based on SIFT fingerprints
    Schleicher, David
    Bergasa, Luis M.
    Barea, Rafael
    Lopez, Elena
    Ocana, Manuel
    Nuevo, Jesus
    Fernandez, Pablo
    [J]. 2007 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING, CONFERENCE PROCEEDINGS BOOK, 2007, : 783 - 788
  • [4] Onboard Real-time Dense Reconstruction of Large-scale Environments for UAV
    Vempati, Anurag Sai
    Gilitschenski, Igor
    Nieto, Juan
    Beardsley, Paul
    Siegwart, Roland
    [J]. 2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 3479 - 3486
  • [5] ORBFusion: Real-time and Accurate dense SLAM at large scale
    Dai, Juting
    Tang, Xinyi
    Oppermann, Leif
    [J]. ADJUNCT PROCEEDINGS OF THE 2017 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR-ADJUNCT), 2017, : 124 - 129
  • [6] Real-time large-scale dense RGB-D SLAM with volumetric fusion
    Whelan, Thomas
    Kaess, Michael
    Johannsson, Hordur
    Fallon, Maurice
    Leonard, John J.
    McDonald, John
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2015, 34 (4-5): : 598 - 626
  • [7] Real-time dense map fusion for stereo SLAM
    Pire, Taihu
    Baravalle, Rodrigo
    D'Alessandro, Ariel
    Civera, Javier
    [J]. ROBOTICA, 2018, 36 (10) : 1510 - 1526
  • [8] Large-Scale Autonomous Flight With Real-Time Semantic SLAM Under Dense Forest Canopy
    Liu, Xu
    Nardari, Guilherme, V
    Ojeda, Fernando Cladera
    Tao, Yuezhan
    Zhou, Alex
    Donnelly, Thomas
    Qu, Chao
    Chen, Steven W.
    Romero, Roseli A. F.
    Taylor, Camillo J.
    Kumar, Vijay
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) : 5512 - 5519
  • [9] Real-Time Large-Scale Dense Mapping with Surfels
    Fu, Xingyin
    Zhu, Feng
    Wu, Qingxiao
    Sun, Yunlei
    Lu, Rongrong
    Yang, Ruigang
    [J]. SENSORS, 2018, 18 (05)
  • [10] Real-Time Large-Scale Dense 3D Reconstruction with Loop Closure
    Kaehler, Olaf
    Prisacariu, Victor A.
    Murray, David W.
    [J]. COMPUTER VISION - ECCV 2016, PT VIII, 2016, 9912 : 500 - 516