Prediction of part machining cycle times via virtual CNC

被引:34
|
作者
Altintas, Y. [1 ]
Tulsyan, S. [1 ]
机构
[1] Univ British Columbia, Dept Mech Engn, Mfg Automat Lab, Vancouver, BC V6T 1W5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Computer numerical control (CNC); Tool path; Cycle time; OPERATIONS; SYSTEM;
D O I
10.1016/j.cirp.2015.04.100
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents the virtual prediction of part machining cycle times within 95% accuracy by considering the trajectory generation and corner smoothing models of commercial CNCs. The key functions of the CNC which control the machine motions are the real time interpolation, trajectory generation and feed drive control modules. It is shown that only the trajectory generation and the interpolation of tool path geometry are crucial in predicting the part machining cycle times, and the servo control loops contribute negligible time delay. The proposed model is experimentally validated in machining 3 and 5-axis parts on commercial CNC machine tools. (c) 2015 CIRP.
引用
收藏
页码:361 / 364
页数:4
相关论文
共 50 条
  • [1] The Virtual Environment for CNC Virtual Machining
    Guan, Li-wen
    Xiong, Jian-wei
    [J]. INTERNATIONAL CONFERENCE ON SIMULATION, MODELLING AND MATHEMATICAL STATISTICS (SMMS 2015), 2015, : 198 - 202
  • [2] Machining/CMM package that cuts cycle times for aerospace part
    不详
    [J]. AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2004, 76 (06): : 631 - 632
  • [3] Safety through virtual CNC machining
    Esterling, DM
    [J]. OPEN ARCHITECTURE CONTROL SYSTEMS AND STANDARDS, 1997, 2912 : 128 - 133
  • [4] Accurate prediction of machining feedrate and cycle times considering interpolator dynamics
    Rob Ward
    Burak Sencer
    Bryn Jones
    Erdem Ozturk
    [J]. The International Journal of Advanced Manufacturing Technology, 2021, 116 : 417 - 438
  • [5] Accurate prediction of machining feedrate and cycle times considering interpolator dynamics
    Ward, Rob
    Sencer, Burak
    Jones, Bryn
    Ozturk, Erdem
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 116 (1-2): : 417 - 438
  • [6] Energy prediction for CNC machining with machine learning
    Brillinger, Markus
    Wuwer, Marcel
    Hadi, Muaaz Abdul
    Haas, Franz
    [J]. CIRP JOURNAL OF MANUFACTURING SCIENCE AND TECHNOLOGY, 2021, 35 : 715 - 723
  • [7] A study on the extreme learning machine based prediction of machining times of the cycloidal gears in CNC milling machines
    Turan Gurgenc
    Ferhat Ucar
    Deniz Korkmaz
    Cihan Ozel
    Yunus Ortac
    [J]. Production Engineering, 2019, 13 : 635 - 647
  • [8] A study on the extreme learning machine based prediction of machining times of the cycloidal gears in CNC milling machines
    Gurgenc, Turan
    Ucar, Ferhat
    Korkmaz, Deniz
    Ozel, Cihan
    Ortac, Yunus
    [J]. PRODUCTION ENGINEERING-RESEARCH AND DEVELOPMENT, 2019, 13 (06): : 635 - 647
  • [9] The development cycle of machining operations on an educational CNC machine
    Baroiu, Nicusor
    Novac, Georgiana
    Tabacaru, Valentin
    Morosanu, Georgiana-Alexandra
    [J]. INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES, 2024, 18 : 44 - 54
  • [10] Surface roughness prediction model for CNC machining of polypropylene
    Dhokia, V. G.
    Kumar, S.
    Vichare, P.
    Newman, S. T.
    Allen, R. D.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2008, 222 (02) : 137 - 153