Confluent Chains of DBT: Enlarged Shape Invariance and New Orthogonal Polynomials

被引:26
|
作者
Grandati, Yves [1 ]
Quesne, Christiane [2 ]
机构
[1] Univ Lorraine, Equipe BioPhysStat, LCP A2MC, F-57070 Metz, France
[2] Univ Libre Bruxelles, Phys Nucl Theor & Phys Math, B-1050 Brussels, Belgium
关键词
quantum mechanics; supersymmetry; orthogonal polynomials; SOLVABLE POTENTIALS; RATIONAL EXTENSIONS; EQUATIONS; FORMULA; SUPERSYMMETRY; FAMILIES; DARBOUX;
D O I
10.3842/SIGMA.2015.061
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct rational extensions of the Darboux-Poschl-Teller and isotonic potentials via two-step confluent Darboux transformations. The former are strictly isospectral to the initial potential, whereas the latter are only quasi-isospectral. Both are associated to new families of orthogonal polynomials, which, in the first case, depend on a continuous parameter. We also prove that these extended potentials possess an enlarged shape invariance property.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Supersymmetry and shape invariance of exceptional orthogonal polynomials
    Yadav, Satish
    Khare, Avinash
    Mandal, Bhabani Prasad
    ANNALS OF PHYSICS, 2022, 444
  • [2] Orthogonal confluent hypergeometric lattice polynomials
    Elliott, CJ
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 193 (01) : 89 - 108
  • [3] Multiple orthogonal polynomials associated with confluent hypergeometric functions
    Lima, Helder
    Loureiro, Ana
    JOURNAL OF APPROXIMATION THEORY, 2020, 260
  • [4] CLASS OF ORTHOGONAL POLYNOMIALS ASSOCIATED WITH A CONFLUENT FORM OF HEUNS EQUATION
    DINH, PN
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1970, 270 (10): : 650 - &
  • [5] A NEW TECHNIQUE FOR SHAPE-ANALYSIS USING ORTHOGONAL POLYNOMIALS
    XU, J
    YANG, YH
    PATTERN RECOGNITION LETTERS, 1988, 7 (03) : 191 - 197
  • [6] Infinitely many shape invariant potentials and new orthogonal polynomials
    Odake, Satoru
    Sasaki, Ryu
    PHYSICS LETTERS B, 2009, 679 (04) : 414 - 417
  • [7] Complex Exceptional Orthogonal Polynomials and Quasi-invariance
    Haese-Hill, William A.
    Hallnaes, Martin A.
    Veselov, Alexander P.
    LETTERS IN MATHEMATICAL PHYSICS, 2016, 106 (05) : 583 - 606
  • [8] Complex Exceptional Orthogonal Polynomials and Quasi-invariance
    William A. Haese-Hill
    Martin A. Hallnäs
    Alexander P. Veselov
    Letters in Mathematical Physics, 2016, 106 : 583 - 606
  • [9] Finite Markov chains and multiple orthogonal polynomials
    Branquinho, Amilcar
    Diaz, Juan E. F.
    Foulquie-Moreno, Ana
    Manas, Manuel
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 463
  • [10] A NEW CLASS OF ORTHOGONAL POLYNOMIALS - THE BESSEL POLYNOMIALS
    KRALL, HL
    FRINK, O
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 65 (JAN) : 100 - 115