Discontinuous Nash equilibrium points for nonzero-sum stochastic differential games

被引:3
|
作者
Hamadene, Said [1 ]
Mu, Rui [2 ,3 ]
机构
[1] Univ Maine, LMM, F-72085 Le Mans 9, France
[2] Soochow Univ, Ctr Financial Engn, Suzhou 215006, Peoples R China
[3] Soochow Univ, Sch Math Sci, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonzero-sum stochastic differential games; Nash equilibrium point; Backward stochastic differential equations; MINIMAL SUPERSOLUTIONS; EXISTENCE; PAYOFFS; BSDES; EQUATIONS; FEEDBACK;
D O I
10.1016/j.spa.2020.07.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study a nonzero-sum stochastic differential game in the Markovian framework. We show the existence of a discontinuous Nash equilibrium point for this game. The main tool is the notion of backward stochastic differential equations which, in our case, are multidimensional with discontinuous generators with respect to z component. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:6901 / 6926
页数:26
相关论文
共 50 条