Approximate Controllability of Second-Grade Fluids

被引:2
|
作者
Ngo, Van-Sang [1 ]
Raugel, Genevieve [2 ]
机构
[1] Univ Rouen, UMR 6085 CNRS, Lab Math Raphael Sale, F-76801 St Etienne Du Rouvray, France
[2] Univ Paris Sud, CNRS, Lab Math Orsay, F-91405 Orsay, France
关键词
Second grade fluid equations; Approximate controllability; Agrachev-Sarychev method; NAVIER-STOKES EQUATIONS; CLASSICAL-SOLUTIONS; EXISTENCE; UNIQUENESS; MOTION; EULER; MODEL; PROJECTIONS;
D O I
10.1007/s10883-020-09503-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with the controllability of the second-grade fluids, a class of non-Newtonian of differential type, on a two-dimensional torus. Using the method of Agrachev and Sarychev (J. Math Fluid Mech., 7(1):108-52 (2005)), Agrachev and Sarychev (Commun Math Phys., 265(3):673-97 (2006)), and of Shirikyan (Commun Math Phys., 266(1):123-51 (2006)), we prove that the system of second-grade fluids is approximately controllable by a finite-dimensional control force.
引用
收藏
页码:531 / 556
页数:26
相关论文
共 50 条
  • [1] Approximate Controllability of Second-Grade Fluids
    Van-Sang Ngo
    Geneviève Raugel
    [J]. Journal of Dynamical and Control Systems, 2021, 27 : 531 - 556
  • [2] On the thermodynamics of some generalized second-grade fluids
    Man, Chi-Sing
    Massoudi, Mehrdad
    [J]. CONTINUUM MECHANICS AND THERMODYNAMICS, 2010, 22 (01) : 27 - 46
  • [3] On the thermodynamics of some generalized second-grade fluids
    Chi-Sing Man
    Mehrdad Massoudi
    [J]. Continuum Mechanics and Thermodynamics, 2010, 22 : 27 - 46
  • [4] An Extended Thermodynamics Study for Second-Grade Adiabatic Fluids
    Barbera, Elvira
    Fazio, Claudia
    [J]. AXIOMS, 2024, 13 (04)
  • [5] Boussinesq-type approximation for second-grade fluids
    Passerini, A
    Thäter, G
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2005, 40 (06) : 821 - 831
  • [6] Exact solutions for steady flows of second-grade fluids
    张道祥
    冯素晓
    卢志明
    刘宇陆
    [J]. Advances in Manufacturing, 2009, 13 (04) : 340 - 344
  • [7] Existence of threedimensional flows of second-grade fluids past an obstacle
    Novotny, A
    Sequeira, A
    Videman, JH
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (05) : 3051 - 3058
  • [8] Starting solutions for some simple oscillating motions of second-grade fluids
    Fetecau, C.
    Fetecau, Corina
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2006, 2006
  • [9] Existence and uniqueness of the flow of second-grade fluids with slip boundary conditions
    Le Roux, C
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 148 (04) : 309 - 356
  • [10] 'SECOND-GRADE ANGEL'
    ROBERTS, L
    [J]. HUDSON REVIEW, 1993, 46 (02): : 345 - 346