Efficient fetal size classification combined with artificial neural network for estimation of fetal weight

被引:7
|
作者
Cheng, Yueh-Chin [1 ]
Yan, Gwo-Lang [2 ]
Chiu, Yu Hsien [3 ]
Chang, Fong-Ming
Chang, Chiung-Hsin [4 ]
Chung, Kao-Chi [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Biomed Engn, Tainan 701, Taiwan
[2] So Taiwan Univ Technol, Dept Comp Sci & Informat Engn, Tainan, Taiwan
[3] Kaohsiung Med Univ, Dept Healthcare Adm & Med Informat, Kaohsiung, Taiwan
[4] Natl Cheng Kung Univ, Dept Obstet & Gynecol, Med Coll & Hosp, Tainan 70101, Taiwan
来源
关键词
artificial neural network; estimated fetal weight; ultrasonographic parameter; PRENATAL SONOGRAPHIC FEATURES; BIPARIETAL DIAMETER; BIRTH-WEIGHT; ULTRASOUND ESTIMATION; STEPWISE-REGRESSION; HEAD CIRCUMFERENCE; GESTATIONAL-AGE; ITEM ANALYSIS; FEMUR LENGTH; FETUSES;
D O I
10.1016/j.tjog.2012.09.009
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
Objectives: A novel analysis was undertaken to select a significant ultrasonographic parameter (USP) for classifying fetuses to support artificial neural network (ANN), and thus to enhance the accuracy of fetal weight estimation. Methods: In total, 2127 singletons were examined by prenatal ultrasound within 3 days before delivery. First, correlation analysis was used to determine a significant USP for fetal grouping. Second, K-means algorithm was utilized for fetal size classification based on the selected USP. Finally, stepwise regression analysis was used to examine input parameters of the ANN model. Results: The estimated fetal weight (EFW) of the new model showed mean absolute percent error (MAPE) of 5.26 +/- 4.14% and mean absolute error (MAE) of 157.91 +/- 119.90 g. Comparison of EFW accuracy showed that the new model significantly outperformed the commonly-used EFW formulas (all p < 0.05). Conclusion: We proved the importance of choosing a specific grouping parameter for ANN to improve EFW accuracy. Copyright (C) 2012, Taiwan Association of Obstetrics & Gynecology. Published by Elsevier Taiwan LLC. All rights reserved.
引用
收藏
页码:545 / 553
页数:9
相关论文
共 50 条
  • [1] Application of artificial neural network for estimation of fetal weight
    Cheng, Y. C.
    Hou, C. J.
    Cheng, F. M.
    Chung, K. C.
    [J]. 3RD KUALA LUMPUR INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING 2006, 2007, 15 : 42 - +
  • [2] Ultrasound estimation of fetal weight with the use of computerized artificial neural network model
    Chuang, L
    Hwang, JY
    Chang, CH
    Yu, CH
    Chang, FM
    [J]. ULTRASOUND IN MEDICINE AND BIOLOGY, 2002, 28 (08): : 991 - 996
  • [3] Cluster-Based Artificial Neural Network on Ultrasonographic Parameters for Fetal Weight Estimation
    Cheng, Yueh-Chin
    Hsia, Chi-Chun
    Chang, Fong-Ming
    Hou, Chun-Ju
    Chiu, Yu-Hsien
    Chung, Kao-Chi
    [J]. 6TH WORLD CONGRESS OF BIOMECHANICS (WCB 2010), PTS 1-3, 2010, 31 : 1514 - +
  • [4] THE USE OF A NEURAL NETWORK FOR THE ULTRASONOGRAPHIC ESTIMATION OF FETAL WEIGHT IN THE MACROSOMIC FETUS
    FARMER, RM
    MEDEARIS, AL
    HIRATA, GI
    PLATT, LD
    [J]. AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 1992, 166 (05) : 1467 - 1472
  • [5] Fetal weight estimation based on deep neural network: a retrospective observational study
    Wang, Yifei
    Shi, Yi
    Zhang, Chenjie
    Su, Kaizhen
    Hu, Yixiao
    Chen, Lei
    Wu, Yanting
    Huang, Hefeng
    [J]. BMC PREGNANCY AND CHILDBIRTH, 2023, 23 (01)
  • [6] Fetal weight estimation based on deep neural network: a retrospective observational study
    Yifei Wang
    Yi Shi
    Chenjie Zhang
    Kaizhen Su
    Yixiao Hu
    Lei Chen
    Yanting Wu
    Hefeng Huang
    [J]. BMC Pregnancy and Childbirth, 23
  • [7] ESTIMATION OF FETAL WEIGHT
    HIGGINBOTTOM, J
    [J]. BRITISH JOURNAL OF RADIOLOGY, 1978, 51 (603): : 232 - 232
  • [8] FETAL WEIGHT ESTIMATION
    RYAN, J
    BERRY, R
    [J]. AUSTRALASIAN RADIOLOGY, 1972, 16 (02): : 162 - 179
  • [9] FETAL WEIGHT ESTIMATION
    MCSWEENEY, DJ
    [J]. AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 1958, 76 (06) : 1279 - 1282
  • [10] A new neural network approach for estimating fetal weight
    Severi, FM
    Cevenini, G
    Bocchi, C
    Ferretti, C
    Massai, MR
    Barbini, P
    Pctraglia, F
    [J]. PROCEEDINGS OF THE FIRST NATIONAL CONGRESS OF THE ITALIAN SOCIETY FOR MATERNOFETAL MEDICINE, 2003, : 101 - 105