A new (and optimal) result for the boundedness of a solution of a quasilinear chemotaxis-haptotaxis model (with a logistic source)

被引:8
|
作者
Liu, Ling [1 ]
Zheng, Jiashan [2 ]
Li, Yu [2 ]
Yan, Weifang [2 ]
机构
[1] Jilin Jianzhu Univ, Dept Basic Sci, Changchun 130118, Peoples R China
[2] Ludong Univ, Sch Math & Stat Sci, Yantai 264025, Peoples R China
关键词
Roundedness; Chemotaxis-haptotaxis; Nonlinear diffusion; Global existence; KELLER-SEGEL SYSTEM; GLOBAL ASYMPTOTIC STABILITY; BLOW-UP; CONSTANT EQUILIBRIA; EXISTENCE; EQUATIONS; INVASION; TISSUE;
D O I
10.1016/j.jmaa.2020.124231
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article deals with an initial-boundary value problem for the coupled chemotaxis-haptotaxis system with nonlinear diffusion u(t) = del . (D(u)del u) - chi del . (u del v) - xi del . (u del w) + mu u (1 - u - w), x is an element of Omega, t > 0, tau v(t =) Delta v - v + u, x is an element of Omega, t > 0, w(t) = -vw, x is an element of Omega, t > 0 (0.1) under homogeneous Neumann boundary conditions in a smooth bounded domain Omega subset of R-N (N >= 1), where tau is an element of {0, 1} and chi, xi, and mu are given nonnegative parameters. The diffusivity D(u) is assumed to satisfy D(u) >= C-D(u + 1)(m-1) for all u >= 0 and C-D > 0. In the present work it is shown that if m >= 2 - 2/N lambda with 0 < mu < kappa(0), m > 2 - 2/N lambda with mu >= kappa(0), or m > 2 - 2/N and mu = 0 or m = 2 - 2/N and C-D > C-GN(1 + parallel to u(0)parallel to L-1(Omega))(3)/4 (2 - 2/N)(2)kappa(0), then for all reasonably regular initial data, a corresponding initial-boundary value problem for (0.1) possesses a unique global classical solution that is uniformly bounded in Omega x (0, infinity), where lambda = kappa(0)/(kappa(0) - mu)+ and kappa(0) = {max(s >= 1) lambda(1/s+1)(0)(chi + xi parallel to w0 parallel to L-infinity(Omega)) if tau = 1, chi if tau = 0. Here C-GN and lambda(0) are constants that correspond to the Gagliardo-Nirenberg inequality and the maximal Sobolev regularity, respectively. With use of new L-p-estimate techniques to obtain the a priori estimate of a solution from L-1(Omega) -> L lambda-epsilon(Omega) -> L-lambda(Omega) -> L lambda+epsilon(Omega) -> L-p(Omega) (for all p > 1), these results significantly improve or extend previous results obtained by several authors. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source
    Liu, Ji
    Zheng, Jiashan
    Wang, Yifu
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (02):
  • [2] Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source
    Wang, Liangchen
    Mu, Chunlai
    Hu, Xuegang
    Tian, Ya
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (08) : 3000 - 3016
  • [3] Boundedness of solutions for a quasilinear chemotaxis-haptotaxis model
    Ren, Guoqiang
    Liu, Bin
    HOKKAIDO MATHEMATICAL JOURNAL, 2021, 50 (02) : 207 - 245
  • [4] Boundedness of solutions to a quasilinear chemotaxis-haptotaxis model
    Zheng, Jiashan
    Wang, Yifu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (09) : 1898 - 1909
  • [5] A quasilinear chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source
    Liu, Ji
    Wang, Yifu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (06) : 2107 - 2121
  • [6] Boundedness in a quasilinear chemotaxis–haptotaxis system with logistic source
    Ji Liu
    Jiashan Zheng
    Yifu Wang
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [7] A new result for 2D boundedness of solutions to a chemotaxis-haptotaxis model with/without sub-logistic source
    Xiang, Tian
    Zheng, Jiashan
    NONLINEARITY, 2019, 32 (12) : 4890 - 4911
  • [8] GLOBAL EXISTENCE AND BOUNDEDNESS OF SOLUTION OF A PARABOLIC-PARABOLIC-ODE CHEMOTAXIS-HAPTOTAXIS MODEL WITH (GENERALIZED) LOGISTIC SOURCE
    Liu, Ling
    Zheng, Jiashan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (07): : 3357 - 3377
  • [9] Boundedness in a quasilinear chemotaxis-haptotaxis model of parabolic-parabolic-ODE type
    Lei, Long
    Li, Zhongping
    BOUNDARY VALUE PROBLEMS, 2019, 2019 (01)
  • [10] Boundedness of the solution of a higher-dimensional parabolic-ODE-parabolic chemotaxis-haptotaxis model with generalized logistic source
    Zheng, Jiashan
    NONLINEARITY, 2017, 30 (05) : 1987 - 2009