Generalized Langevin equation for tracer diffusion in atomic liquids

被引:11
|
作者
Mendoza-Mendez, Patricia [1 ]
Lopez-Flores, Leticia [1 ]
Vizcarra-Rendon, Alejandro [2 ]
Sanchez-Diaz, Luis E. [3 ]
Medina-Noyola, Magdaleno [4 ]
机构
[1] Benemerita Univ Autonoma Puebla, Fac Ciencias Fisicomatemat, Puebla 72000, Pue, Mexico
[2] Univ Autonoma Zacatecas, Unidad Acad Fis, Zacatecas 98600, Zac, Mexico
[3] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA
[4] Univ Autonoma San Luis Potosi, Inst Fis Manuel Sandoval Vallarta, San Luis Potosi 78000, Slp, Mexico
关键词
Colloidal and atomic liquids; Generalized Langevin equation; Doppler friction; FLUCTUATION-DISSIPATION THEOREM; MODE-COUPLING THEORY; BROWNIAN-MOTION; STATISTICAL-MECHANICS; COLLOIDAL SUSPENSIONS; MICROSCOPIC DYNAMICS; GLASS-TRANSITION; THERMODYNAMICS; DISPERSIONS; RELAXATION;
D O I
10.1016/j.physa.2013.09.061
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive the time-evolution equation that describes the Brownian motion of labeled individual tracer particles in a simple model atomic liquid (i.e., a system of N particles whose motion is governed by Newton's second law, and interacting through spherically symmetric pairwise potentials). We base our derivation on the generalized Langevin equation formalism, and find that the resulting time evolution equation is formally identical to the generalized Langevin equation that describes the Brownian motion of individual tracer particles in a colloidal suspension in the absence of hydrodynamic interactions. This formal dynamic equivalence implies the long-time indistinguishability of some dynamic properties of both systems, such as their mean squared displacement, upon a well-defined time scaling. This prediction is tested here by comparing the results of molecular and Brownian dynamics simulations performed on the hard sphere system. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [1] THE GENERALIZED LANGEVIN EQUATION AS A CONTRACTION OF THE DESCRIPTION - AN APPROACH TO TRACER DIFFUSION
    MEDINANOYOLA, M
    FARADAY DISCUSSIONS, 1987, 83 : 21 - 31
  • [2] Anomalous diffusion and the generalized Langevin equation
    McKinley S.A.
    Nguyen H.D.
    SIAM Journal on Mathematical Analysis, 2018, 50 (05) : 5119 - 5160
  • [3] Anomalous diffusion in a generalized Langevin equation
    Fa, Kwok Sau
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (08)
  • [4] Self-consistent generalized Langevin equation theory of the dynamics of multicomponent atomic liquids
    Lazaro-Lazaro, Edilio
    Mendoza-Mendez, Patricia
    Fernando Elizondo-Aguilera, Luis
    Adrian Perera-Burgos, Jorge
    Ezequiel Ramirez-Gonzalez, Pedro
    Perez-Angel, Gabriel
    Castaneda-Priego, Ramon
    Medina-Noyola, Magdaleno
    JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (18):
  • [5] GENERALIZED LANGEVIN EQUATION APPROACH TO REACTION DYNAMICS IN LIQUIDS
    KAPRAL, R
    SHIN, KJ
    JOURNAL OF CHEMICAL PHYSICS, 1979, 70 (12): : 5623 - 5634
  • [6] GENERALIZED LANGEVIN EQUATION
    HENERY, RJ
    JOURNAL OF PHYSICS PART A GENERAL, 1972, 5 (09): : 1312 - +
  • [7] On anomalous diffusion and the fractional generalized Langevin equation for a harmonic oscillator
    Camargo, R. Figueiredo
    de Oliveira, E. Capelas
    Vaz, J., Jr.
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (12)
  • [8] EQUIVALENCE OF GENERALIZED LANGEVIN EQUATION AND GENERALIZED MASTER EQUATION
    GRABERT, H
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1977, 26 (01): : 79 - 83
  • [9] The Generalized Langevin Equation in Harmonic Potentials: Anomalous Diffusion and Equipartition of Energy
    Gustavo Didier
    Hung D. Nguyen
    Communications in Mathematical Physics, 2022, 393 : 909 - 954
  • [10] Scaling limits for the generalized Langevin equation via diffusion approximation theory
    Pei, Bin
    Kong, Ming
    Han, Min
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2024,