Density waves and jamming transition in cellular automaton models for traffic flow

被引:23
|
作者
Neubert, L
Lee, HY
Schreckenberg, M
机构
[1] Gerhard Mercator Univ Duisburg, D-47048 Duisburg, Germany
[2] Seoul Natl Univ, Dept Phys, Seoul 151742, South Korea
[3] Seoul Natl Univ, Ctr Theoret Phys, Seoul 151742, South Korea
来源
关键词
D O I
10.1088/0305-4470/32/37/303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper computer simulation results of higher-order density correlations for cellular automaton models of traffic flow are presented. The examinations show the jamming transition as a function of both the density and the magnitude of noise and allow one to calculate the velocity of upstream moving jams. This velocity is independent of the density and decreases with growing noise. The point of maximum flow in the fundamental diagram determines its value. For that it is not necessary to explicitly define jams in the language of the selected model, but only based upon the well defined characteristic density profiles along the line.
引用
收藏
页码:6517 / 6525
页数:9
相关论文
共 50 条
  • [1] Jamming transition in a cellular automaton model for traffic flow
    Eisenblatter, B
    Santen, L
    Schadschneider, A
    Schreckenberg, M
    [J]. PHYSICAL REVIEW E, 1998, 57 (02): : 1309 - 1314
  • [2] A new stochastic cellular automaton model on traffic flow and its jamming phase transition
    Sakai, Satoshi
    Nishinari, Katsuhiro
    Iida, Shinji
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (50): : 15327 - 15339
  • [3] Jamming transition in cellular automaton models for pedestrians on passageway
    Fukui, M
    Ishibashi, Y
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1999, 68 (11) : 3738 - 3739
  • [4] Calibration of the Particle Density in Cellular-Automaton Models for Traffic Flow
    Kanai, Masahiro
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2010, 79 (07)
  • [5] CELLULAR-AUTOMATON MODELS AND TRAFFIC FLOW
    SCHADSCHNEIDER, A
    SCHRECKENBERG, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (15): : L679 - L683
  • [6] Random walk theory of jamming in a cellular automaton model for traffic flow
    Barlovic, R
    Schadschneider, A
    Schreckenberg, M
    [J]. PHYSICA A, 2001, 294 (3-4): : 525 - 538
  • [7] Empirical test for cellular automaton models of traffic flow
    Knospe, W
    Santen, L
    Schadschneider, A
    Schreckenberg, M
    [J]. PHYSICAL REVIEW E, 2004, 70 (01):
  • [8] A Lagrange representation of cellular automaton traffic-flow models
    Nishinari, K
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (48): : 10727 - 10736
  • [9] Disordered cellular automaton traffic flow model: phase separated state, density waves and self organized criticality
    Fourrate, K
    Loulidi, M
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2006, 49 (02): : 239 - 246
  • [10] Disordered cellular automaton traffic flow model: phase separated state, density waves and self organized criticality
    K. Fourrate
    M. Loulidi
    [J]. The European Physical Journal B - Condensed Matter and Complex Systems, 2006, 49 : 239 - 246