Data-driven reconstruction of directed networks

被引:9
|
作者
Hempel, Sabrina [1 ,2 ,3 ]
Koseska, Aneta [2 ,3 ,4 ]
Nikoloski, Zoran [5 ,6 ]
机构
[1] Potsdam Inst Climate Impact Res PIK, D-14412 Potsdam, Germany
[2] Univ Berlin, Dept Phys, D-12489 Berlin, Germany
[3] Univ Potsdam, Interdisciplinary Ctr Dynam Complex Syst, D-14476 Potsdam, Germany
[4] Max Planck Inst Mol Physiol, D-44227 Dortmund, Germany
[5] Max Planck Inst Mol Plant Physiol, Syst Biol & Math Modeling Grp, D-14476 Potsdam, Germany
[6] Univ Potsdam, Inst Biochem & Biol, D-14476 Potsdam, Germany
来源
EUROPEAN PHYSICAL JOURNAL B | 2013年 / 86卷 / 06期
关键词
GENE-EXPRESSION DATA; TIME; EVOLUTION; MOTIFS;
D O I
10.1140/epjb/e2013-31111-8
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We investigate the properties of a recently introduced asymmetric association measure, called inner composition alignment (IOTA), aimed at inferring regulatory links (couplings). We show that the measure can be used to determine the direction of coupling, detect superfluous links, and to account for autoregulation. In addition, the measure can be extended to infer the type of regulation (positive or negative). The capabilities of IOTA to correctly infer couplings together with their directionality are compared against Kendall's rank correlation for time series of different lengths, particularly focussing on biological examples. We demonstrate that an extended version of the measure, bidirectional inner composition alignment (biIOTA), increases the accuracy of the network reconstruction for short time series. Finally, we discuss the applicability of the measure to infer couplings in chaotic systems.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Data-driven reconstruction of directed networks
    Sabrina Hempel
    Aneta Koseska
    Zoran Nikoloski
    [J]. The European Physical Journal B, 2013, 86
  • [2] Data-Driven Reconstruction of Firing Rate Dynamics in Brain Networks
    Wang, Xuan
    Cortes, Jorge
    [J]. 2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 6463 - 6468
  • [3] Comparison of data-driven thresholding methods using directed functional brain networks
    Manickam, Thilaga
    Ramasamy, Vijayalakshmi
    Doraisamy, Nandagopal
    [J]. REVIEWS IN THE NEUROSCIENCES, 2024,
  • [4] Temporal convolutional networks for data-driven thermal modeling of directed energy deposition
    Perumal, V.
    Abueidda, D.
    Koric, S.
    Kontsos, A.
    [J]. JOURNAL OF MANUFACTURING PROCESSES, 2023, 85 : 405 - 416
  • [5] Data-driven neural networks for source localization and reconstruction using a planar array
    Kaja, Sai Manikanta
    Srinivasan, Srinath
    Chaitanya, S. K.
    Srinivasan, K.
    [J]. INTERNATIONAL JOURNAL OF AEROACOUSTICS, 2022, 21 (08) : 684 - 707
  • [6] Data-driven control of complex networks
    Giacomo Baggio
    Danielle S. Bassett
    Fabio Pasqualetti
    [J]. Nature Communications, 12
  • [7] Data-driven modeling of power networks
    Safaee, Bita
    Gugercin, Serkan
    [J]. 2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 4236 - 4241
  • [8] PERFORMANCE ANALYSIS OF DATA-DRIVEN NETWORKS
    OLSDER, GJ
    [J]. SYSTOLIC ARRAY PROCESSORS, 1989, : 33 - 41
  • [9] Data-driven control of complex networks
    Baggio, Giacomo
    Bassett, Danielle S.
    Pasqualetti, Fabio
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [10] Convergent Data-Driven Regularizations for CT Reconstruction
    Kabri, Samira
    Auras, Alexander
    Riccio, Danilo
    Bauermeister, Hartmut
    Benning, Martin
    Moeller, Michael
    Burger, Martin
    [J]. COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024, 6 (02) : 1342 - 1368