Investigation of mechanical and durability properties of sustainable high-strength concrete

被引:0
|
作者
Riaz, Mamoon [1 ]
Alam, Zeshan [1 ,2 ]
Zafar, Tayyab [1 ]
Javed, Usman [2 ]
Akhlaq, Hanzlah [3 ]
机构
[1] Int Islamic Univ, Dept Civil Engn, Islamabad, Pakistan
[2] Curtin Univ, Sch Civil & Mech Engn, Perth, Australia
[3] Univ Sargodha, Dept Civil Engn, Sargodha, Pakistan
关键词
durability/silica fume/sustainable high-strength concrete/UN SDG 9: Industry; innovation and infrastructure; SILICA-FUME; COMPRESSIVE STRENGTH; STEEL FIBERS; NANO-SILICA; RICE HUSK; FLY-ASH; CEMENT; PERFORMANCE; METAKAOLIN; HYDRATION;
D O I
10.1680/jfoen.22.00008
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The surge in production of cement due to the rapid growth of the construction industry has an adverse effect on the environment globally caused by the huge amount of carbon dioxide emission. To produce an environment-friendly concrete, this study investigated the effective contribution of silica fume on the various mechanical and durability characteristics of high-strength concrete. In this regard, the incorporation of silica fume was carried out with progressive proportions of 0, 5, 10, 15, 20, 25 and 30% by weight of cement constituting various concrete mixes - namely, CM, SF05, SF10, SF15, SF20, SF25 and SF30, respectively. The mechanical and durability properties of concrete improved with the incorporation of silica fume up to 15% replacement. However, excessive replacement of silica fume has an adverse effect on the mechanical and durability properties of cement due to the dilution effect on cement. Similarly, in terms of mechanical characteristics, the proposed 15% substitution of silica fume resulted in the highest compressive and flexural strengths with respect to those of CM. The maximum reduction in strength loss with respect to that of the control mix was 41.17 and 28.04% for sulfuric and hydrochloric acids due to the formation of a densified microstructure.
引用
收藏
页码:3 / 15
页数:13
相关论文
共 50 条
  • [1] Effect of nanosilica on durability and mechanical properties of high-strength concrete
    Ganesh, Prakasam
    Murthy, Avadhanam Ramachandra
    Kumar, Subramanian Sundar
    Reheman, M. Mohammed Saffiq
    Iyer, Nagesh R.
    MAGAZINE OF CONCRETE RESEARCH, 2016, 68 (05) : 229 - 236
  • [2] Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers
    Afroughsabet, Vahid
    Ozbakkaloglu, Togay
    CONSTRUCTION AND BUILDING MATERIALS, 2015, 94 : 73 - 82
  • [3] Residual Mechanical Properties and Durability of High-Strength Concrete with Polypropylene Fibers in High Temperatures
    Resende, Heron Freitas
    Reis, Elvys Dias
    Arroyo, Felipe Nascimento
    Morato de Moraes, Matheus Henrique
    dos Santos, Herisson Ferreira
    da Silva, Enio Gomes
    Rocco Lahr, Francisco Antonio
    Chahud, Eduardo
    Panzera, Tulio Hallak
    Christoforo, Andre Luis
    Nunes Branco, Luiz Antonio Melgaco
    MATERIALS, 2022, 15 (13)
  • [4] Effect of thermal cycles on the engineering properties and durability of sustainable fibrous high-strength concrete
    Hakeem, Ibrahim Y.
    Hosen, Akter
    Alyami, Mana
    Qaidi, Shaker
    Ozkilic, Yasin O.
    Alhamami, Ali
    Alharthai, Mohammad
    FRONTIERS IN MATERIALS, 2023, 10
  • [5] Hydration, mechanical properties and durability of high-strength concrete under different curing conditions
    Han, Fanghui
    Zhang, Zengqi
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2018, 132 (02) : 823 - 834
  • [6] Hydration, mechanical properties and durability of high-strength concrete under different curing conditions
    Fanghui Han
    Zengqi Zhang
    Journal of Thermal Analysis and Calorimetry, 2018, 132 : 823 - 834
  • [7] Mechanical properties of high-strength concrete: A review
    Kaushik, S.K.
    Kumar, Virendra
    Bhargava, V.P.
    Indian Concrete Journal, 2001, 75 (08): : 515 - 521
  • [8] Study on the mechanical properties of high-strength concrete
    Zhang, Xiaodong
    Zhong, Weiqun
    Harbin Jianzhu Gongcheng Xueyuan Xuebao/Journal of Harbin University of Architecture Engineering, 1996, 29 (03): : 62 - 68
  • [9] Investigation of the physical-mechanical properties and durability of high-strength concrete with recycled PET as a partial replacement for fine aggregates
    Qaidi, Shaker
    Al-Kamaki, Yaman
    Hakeem, Ibrahim
    Dulaimi, Anmar F.
    Ozkilic, Yasin
    Sabri, Mohanad
    Sergeev, Vitaly
    FRONTIERS IN MATERIALS, 2023, 10
  • [10] Development of high-strength pervious concrete with an emphasis on durability properties
    Chaitanya, Mycherla
    Ramakrishna, G.
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2023, 24 (02): : 257 - 265