Nonlinear regression models with single-index heteroscedasticity

被引:6
|
作者
Zhang, Jun [1 ]
Gai, Yujie [2 ]
Lin, Bingqing [1 ]
Zhu, Xuehu [3 ]
机构
[1] Shenzhen Univ, Inst Stat Sci, Coll Math & Stat, Shenzhen 518060, Peoples R China
[2] Cent Univ Finance & Econ, Sch Stat & Math, Beijing, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Math & Stat, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
efficient estimator; empirical distribution function; empirical likelihood; kernel smoothing; single-index; SEMIPARAMETRIC ESTIMATION; LEAST-SQUARES; VARIANCE; DISTRIBUTIONS; ESTIMATORS; RESIDUALS;
D O I
10.1111/stan.12170
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider nonlinear heteroscedastic single-index models where the mean function is a parametric nonlinear model and the variance function depends on a single-index structure. We develop an efficient estimation method for the parameters in the mean function by using the weighted least squares estimation, and we propose a "delete-one-component" estimator for the single-index in the variance function based on absolute residuals. Asymptotic results of estimators are also investigated. The estimation methods for the error distribution based on the classical empirical distribution function and an empirical likelihood method are discussed. The empirical likelihood method allows for incorporation of the assumptions on the error distribution into the estimation. Simulations illustrate the results, and a real chemical data set is analyzed to demonstrate the performance of the proposed estimators.
引用
收藏
页码:292 / 316
页数:25
相关论文
共 50 条
  • [1] A new test for heteroscedasticity in single-index models
    Zhao, Yan-Yong
    Zhao, Jian-Qiang
    Qian, Su-An
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 381
  • [2] Conditional regression for single-index models
    Lanteri, Alessandro
    Maggioni, Mauro
    Vigogna, Stefano
    BERNOULLI, 2022, 28 (04) : 3051 - 3078
  • [3] On single-index coefficient regression models
    Xia, YC
    Li, WK
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (448) : 1275 - 1285
  • [4] Single-index composite quantile regression with heteroscedasticity and general error distributions
    Jiang, Rong
    Qian, Wei-Min
    Zhou, Zhan-Gong
    STATISTICAL PAPERS, 2016, 57 (01) : 185 - 203
  • [5] Detection of marginal heteroscedasticity for partial linear single-index models
    Zhang, Jun
    Gai, Yujie
    Lin, Bingqing
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (03) : 724 - 743
  • [6] Single-index composite quantile regression with heteroscedasticity and general error distributions
    Rong Jiang
    Wei-Min Qian
    Zhan-Gong Zhou
    Statistical Papers, 2016, 57 : 185 - 203
  • [7] Single-index relative error regression models
    Gai, Yujie
    Zhang, Jun
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (05) : 2252 - 2267
  • [8] Functional single-index quantile regression models
    Sang, Peijun
    Cao, Jiguo
    STATISTICS AND COMPUTING, 2020, 30 (04) : 771 - 781
  • [9] Bayesian quantile regression for single-index models
    Hu, Yuao
    Gramacy, Robert B.
    Lian, Heng
    STATISTICS AND COMPUTING, 2013, 23 (04) : 437 - 454
  • [10] Penalized LAD Regression for Single-index Models
    Yang, Hu
    Lv, Jing
    Guo, Chaohui
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (07) : 2392 - 2408