Nonlinear regression models with single-index heteroscedasticity
被引:6
|
作者:
Zhang, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Inst Stat Sci, Coll Math & Stat, Shenzhen 518060, Peoples R ChinaShenzhen Univ, Inst Stat Sci, Coll Math & Stat, Shenzhen 518060, Peoples R China
Zhang, Jun
[1
]
Gai, Yujie
论文数: 0引用数: 0
h-index: 0
机构:
Cent Univ Finance & Econ, Sch Stat & Math, Beijing, Peoples R ChinaShenzhen Univ, Inst Stat Sci, Coll Math & Stat, Shenzhen 518060, Peoples R China
Gai, Yujie
[2
]
Lin, Bingqing
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Inst Stat Sci, Coll Math & Stat, Shenzhen 518060, Peoples R ChinaShenzhen Univ, Inst Stat Sci, Coll Math & Stat, Shenzhen 518060, Peoples R China
Lin, Bingqing
[1
]
Zhu, Xuehu
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian, Shaanxi, Peoples R ChinaShenzhen Univ, Inst Stat Sci, Coll Math & Stat, Shenzhen 518060, Peoples R China
Zhu, Xuehu
[3
]
机构:
[1] Shenzhen Univ, Inst Stat Sci, Coll Math & Stat, Shenzhen 518060, Peoples R China
[2] Cent Univ Finance & Econ, Sch Stat & Math, Beijing, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Math & Stat, Xian, Shaanxi, Peoples R China
We consider nonlinear heteroscedastic single-index models where the mean function is a parametric nonlinear model and the variance function depends on a single-index structure. We develop an efficient estimation method for the parameters in the mean function by using the weighted least squares estimation, and we propose a "delete-one-component" estimator for the single-index in the variance function based on absolute residuals. Asymptotic results of estimators are also investigated. The estimation methods for the error distribution based on the classical empirical distribution function and an empirical likelihood method are discussed. The empirical likelihood method allows for incorporation of the assumptions on the error distribution into the estimation. Simulations illustrate the results, and a real chemical data set is analyzed to demonstrate the performance of the proposed estimators.
机构:
Shenzhen Univ, Inst Stat Sci, Coll Math & Stat, Shenzhen 518060, Peoples R ChinaShenzhen Univ, Inst Stat Sci, Coll Math & Stat, Shenzhen 518060, Peoples R China
Zhang, Jun
Gai, Yujie
论文数: 0引用数: 0
h-index: 0
机构:
Cent Univ Finance & Econ, Sch Stat & Math, Beijing, Peoples R China
Univ Texas Houston, Dept Biostat, Sch Publ Hlth, Houston, TX USAShenzhen Univ, Inst Stat Sci, Coll Math & Stat, Shenzhen 518060, Peoples R China
Gai, Yujie
Lin, Bingqing
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Inst Stat Sci, Coll Math & Stat, Shenzhen 518060, Peoples R ChinaShenzhen Univ, Inst Stat Sci, Coll Math & Stat, Shenzhen 518060, Peoples R China