BERNOULLICITY OF EQUILIBRIUM MEASURES ON COUNTABLE MARKOV SHIFTS

被引:13
|
作者
Daon, Yair [1 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
Equilibrium measures; countable Markov shifts; Bernoulli; Walters condition;
D O I
10.3934/dcds.2013.33.4003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study equilibrium behavior for two-sided topological Markov shifts with a countable number of states. We assume the associated potential is Walters with finite first variation and that the shift is topologically transitive. We show the resulting equilibrium measure is Bernoulli up to a period.
引用
收藏
页码:4003 / 4015
页数:13
相关论文
共 50 条