We show that A always possesses a winning strategy, regardless of the initial shape of the graph and of the moves of B. This implies, translating the game back to algebraic geometry, that there is a choice of centres for the blowup of singular varieties in characteristic zero which eventually leads to their resolution. The algebra needed for this implication is elementary. The transcription from varieties to graphs and from blowups to modifications of the graph thus axiomatizes the proof of the resolution of singularities. In principle, the same logic could also work in positive characteristic, once an appropriate descent in dimension is settled.