Covariance estimation;
General linear models;
Graphical models;
Linear mixed models;
MCMC;
Penalized splines;
Reference prior;
Smoothing;
Structural equation models;
DISTRIBUTIONS;
SELECTION;
MATRIX;
D O I:
10.1016/j.jspi.2012.01.005
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We develop a new class of reference priors for linear models with general covariance structures. A general Markov chain Monte Carlo algorithm is also proposed for implementing the computation. We present several examples to demonstrate the results: Bayesian penalized spline smoothing, a Bayesian approach to bivariate smoothing for a spatial model, and prior specification for structural equation models. (C) 2012 Published by Elsevier B.V.
机构:
Univ Sheffield, Dept Probabil & Stat, Sheffield S3 7RH, S Yorkshire, EnglandUniv Sheffield, Dept Probabil & Stat, Sheffield S3 7RH, S Yorkshire, England
机构:
Monash Univ, Fac Business & Econ, Dept Economet & Business Stat, Clayton, Vic 3800, AustraliaMonash Univ, Fac Business & Econ, Dept Economet & Business Stat, Clayton, Vic 3800, Australia
机构:
Univ Orange Free State, Dept Math Stat, ZA-9300 Bloemfontein, South AfricaUniv Orange Free State, Dept Math Stat, ZA-9300 Bloemfontein, South Africa
Pretorius, AL
van der Merwe, AJ
论文数: 0引用数: 0
h-index: 0
机构:
Univ Orange Free State, Dept Math Stat, ZA-9300 Bloemfontein, South AfricaUniv Orange Free State, Dept Math Stat, ZA-9300 Bloemfontein, South Africa