Forecasting Zakat Collection Using Artificial Neural Network

被引:3
|
作者
Ubaidillah, Sh. Hafizah Sy Ahmad [1 ]
Sallehuddin, Roselina [1 ]
机构
[1] Univ Teknol Malaysia, Fac Sci Comp & Informat Syst, Utm Skudai 81310, Johor Dt, Malaysia
关键词
Back Propagation; Levenberg-Marquardt; Artificial Neural Network; forecasting; correlation;
D O I
10.1063/1.4801124
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
'Zakat', "that which purifies" or "alms", is the giving of a fixed portion of one's wealth to charity, generally to the poor and needy. It is one of the five pillars of Islam, and must be paid by all practicing Muslims who have the financial means (nisab). 'Nisab' is the minimum level to determine whether there is a 'zakat' to be paid on the assets. Today, in most Muslim countries, 'zakat' is collected through a decentralized and voluntary system. Under this voluntary system, 'zakat' committees are established, which are tasked with the collection and distribution of 'zakat' funds. 'Zakat' promotes a more equitable redistribution of wealth, and fosters a sense of solidarity amongst members of the 'Ummah'. The Malaysian government has established a 'zakat' center at every state to facilitate the management of 'zakat'. The center has to have a good 'zakat' management system to effectively execute its functions especially in the collection and distribution of 'zakat'. Therefore, a good forecasting model is needed. The purpose of this study is to develop a forecasting model for Pusat Zakat Pahang (PZP) to predict the total amount of collection from 'zakat' of assets more precisely. In this study, two different Artificial Neural Network (ANN) models using two different learning algorithms are developed; Back Propagation (BP) and Levenberg-Marquardt (LM). Both models are developed and compared in terms of their accuracy performance. The best model is determined based on the lowest mean square error and the highest correlations values. Based on the results obtained from the study, BP neural network is recommended as the forecasting model to forecast the collection from 'zakat' of assets for PZP.
引用
下载
收藏
页码:196 / 204
页数:9
相关论文
共 50 条
  • [1] Forecasting the Financial Soundness of Indonesia's National Board of Zakat (BAZNAS) Using Artificial Neural Network Models
    Syamsuri, Syamsuri
    Johari, Fuadah
    Nadhilah, Nadhilah
    Sa'adah, Yaumi
    TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS, 2024, 13 (01): : 605 - 615
  • [2] Weather Forecasting Using Artificial Neural Network
    Fente, Dires Negash
    Singh, Dheeraj Kumar
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICICCT), 2018, : 1757 - 1761
  • [3] Weather Forecasting Using Artificial Neural Network and Bayesian Network
    Abistado, Klent Gomez
    Arellano, Catherine N.
    Maravillas, Elmer A.
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2014, 18 (05) : 812 - 817
  • [4] A survey on rainfall forecasting using artificial neural network
    Liu, Qi
    Zou, Yanyun
    Liu, Xiaodong
    Linge, Nigel
    INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS, 2019, 11 (02) : 240 - 249
  • [5] Electricity price forecasting using Artificial Neural Network
    Ranjbar, M.
    Soleymani, S.
    Sadati, N.
    Ranjbar, A. M.
    2006 IEEE INTERNATIONAL CONFERENCE ON POWER ELECTRONIC, DRIVES AND ENERGY SYSTEMS, VOLS 1 AND 2, 2006, : 931 - +
  • [6] Weather forecasting model using Artificial Neural Network
    Abhishek, Kumar
    Singh, M. P.
    Ghosh, Saswata
    Anand, Abhishek
    2ND INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATION, CONTROL AND INFORMATION TECHNOLOGY (C3IT-2012), 2012, 4 : 311 - 318
  • [7] Solar Radiation Forecasting Using Artificial Neural Network
    Jensona, J. Ida
    Praynlin, E.
    2017 INNOVATIONS IN POWER AND ADVANCED COMPUTING TECHNOLOGIES (I-PACT), 2017,
  • [8] Time Series Forecasting Using Artificial Neural Network
    Varysova, Tereza
    INNOVATION VISION 2020: FROM REGIONAL DEVELOPMENT SUSTAINABILITY TO GLOBAL ECONOMIC GROWTH, VOL I-VI, 2015, : 527 - 535
  • [9] Solar Power Output Forecasting Using Artificial Neural Network
    El Kounni, Abdelkader
    Radoine, Hassan
    Mastouri, Hicham
    Bahi, Hicham
    Outzourhit, Abdelkader
    PROCEEDINGS OF 2021 9TH INTERNATIONAL RENEWABLE AND SUSTAINABLE ENERGY CONFERENCE (IRSEC), 2021, : 99 - 105
  • [10] Air compressor load forecasting using artificial neural network
    Wu, Da-Chun
    Asl, Babak Bahrami
    Razban, Ali
    Chen, Jie
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 168