On the b-chromatic number of cartesian products

被引:4
|
作者
Guo, Chuan [1 ,3 ]
Newman, Mike [2 ]
机构
[1] Univ Waterloo, Waterloo, ON, Canada
[2] Univ Ottawa, Math & Stat, Ottawa, ON, Canada
[3] Cornell Univ, Dept Comp Sci, Ithaca, NY 14853 USA
基金
加拿大自然科学与工程研究理事会;
关键词
b-chromatic number; Cartesian products; GRAPHS;
D O I
10.1016/j.dam.2017.12.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the b-chromatic number of cartesian products of graphs. We show that the b-chromatic number of K-n(square d) for d >= 3 is one more than the degree; ford >= 12 this follows from a result of Kratochvil, Tuza and Voigt. We show that K-m square K-n, has b-chromatic number at most its degree, and give different approaches that come close to this bound. We also consider cartesian powers of general graphs, and show that the cartesian product of d graphs each with b-chromatic number n is at least d(n - 1) + 1. This extends a theorem of Kouider and Maheo by removing their condition on independent sets as long as the factor graphs all have the same b-chromatic number. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:82 / 93
页数:12
相关论文
共 50 条
  • [1] The b-chromatic number of the cartesian product of two graphs
    Kouider, Mekkia
    Maheo, Maryvonne
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2007, 44 (01) : 49 - 55
  • [2] ON THE b-CHROMATIC NUMBER OF SOME GRAPH PRODUCTS
    Jakovac, Marko
    Peterin, Iztok
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2012, 49 (02) : 156 - 169
  • [3] b-Chromatic Number of Cartesian Product of Some Families of Graphs
    R. Balakrishnan
    S. Francis Raj
    T. Kavaskar
    Graphs and Combinatorics, 2014, 30 : 511 - 520
  • [4] b-Chromatic Number of Cartesian Product of Some Families of Graphs
    Balakrishnan, R.
    Raj, S. Francis
    Kavaskar, T.
    GRAPHS AND COMBINATORICS, 2014, 30 (03) : 511 - 520
  • [5] The b-chromatic number of a graph
    Irving, RW
    Manlove, DF
    DISCRETE APPLIED MATHEMATICS, 1999, 91 (1-3) : 127 - 141
  • [6] On the b-chromatic number of graphs
    Kratochvíl, J
    Tuza, Z
    Voigt, M
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2002, 2573 : 310 - 320
  • [7] On approximating the b-chromatic number
    Corteel, S
    Valencia-Pabon, M
    Vera, JC
    DISCRETE APPLIED MATHEMATICS, 2005, 146 (01) : 106 - 110
  • [8] The b-Chromatic Number of Cubic Graphs
    Jakovac, Marko
    Klavzar, Sandi
    GRAPHS AND COMBINATORICS, 2010, 26 (01) : 107 - 118
  • [9] The b-Chromatic Number of Cubic Graphs
    Marko Jakovac
    Sandi Klavžar
    Graphs and Combinatorics, 2010, 26 : 107 - 118
  • [10] The b-Chromatic Number of Corona Graphs
    Vivin, Vernold J.
    Venkatachalam, M.
    UTILITAS MATHEMATICA, 2012, 88 : 299 - 307