On a class of wreath products of hypergroups and association schemes

被引:10
|
作者
Tanaka, Rie [1 ]
Zieschang, Paul-Hermann [1 ]
机构
[1] Univ Texas Brownsville, Dept Math, Brownsville, TX 78520 USA
关键词
Groups; Association schemes; Hypergroups; Wreath products; Subconstituent algebras; ALGEBRAS;
D O I
10.1007/s10801-012-0376-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize finite hypergroups S (in the sense of Fr,d,ric Marty in HuitiSme Congres des Math,maticiens, pp. 45-59, 1934) satisfying |pq|=1 for any two elements p and q in S with p not equal q (au) in terms of wreath products. The result applies to association schemes of finite valency and provides a corresponding characterization in scheme theory. For association schemes S of finite valency satisfying the above condition, we provide a second characterization, a characterization in terms of the subconstituent algebra of S.
引用
收藏
页码:601 / 619
页数:19
相关论文
共 50 条