Post-fire mechanical properties of sandwich composite structures

被引:31
|
作者
Anjang, A. [1 ,2 ]
Chevali, V. S. [1 ,3 ]
Lattimer, B. Y. [4 ]
Case, S. W. [5 ]
Feih, S. [1 ,6 ]
Mouritz, A. P. [1 ]
机构
[1] RMIT Univ, Sch Aerosp Mech & Mfg Engn, Sir Lawrence Wackett Aerosp Res Ctr, Melbourne, Vic 3001, Australia
[2] Univ Sains Malaysia, Sch Aerosp Engn, Nibong Tebal 14300, Malaysia
[3] CRC ACS, Melbourne, Vic 3207, Australia
[4] Virginia Polytech Inst & State Univ, Dept Mech Engn, Blacksburg, VA 24061 USA
[5] Virginia Polytech Inst & State Univ, Dept Biomed Engn & Mech, Blacksburg, VA 24061 USA
[6] Singapore Inst Mfg Technol SIMTech, Singapore 638075, Singapore
关键词
Sandwich composite; Fire; Modelling; Damage; Mechanical properties; REINFORCED POLYESTER COMPOSITES; FIBER-POLYMER COMPOSITES; THERMAL RESPONSE; FRP COMPOSITES; FIRE; PANELS; TEMPERATURE; INTEGRITY; TENSILE; DAMAGE;
D O I
10.1016/j.compstruct.2015.07.009
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A thermal mechanical model for calculating the residual stiffness and strength of fire-exposed sandwich composite structures is presented. The model computes the unsteady-state heat flow and decomposition of a sandwich composite exposed to one-sided radiant heating representative of a fire scenario. The model also computes the residual tension and compression properties of a fire-exposed sandwich composite at room temperature. The accuracy of the model is assessed using post-fire stiffness and failure stress property data for a sandwich composite beam consisting of face skins of E-glass/vinyl ester laminate and a core of balsa wood. Experimental testing reveals that the residual tension and compression properties of the sandwich composite decrease rapidly due mainly to thermal decomposition to the fire-exposed skin. It is demonstrated that the model can accurately predict the residual stiffness and strength properties of fire-exposed sandwich composites. The model reveals that the post-fire tension properties are controlled by char damage to the entire sandwich composite whereas the post-fire compression properties are only dependent on charring to the front skin, resulting in a more rapid loss in stiffness and strength than the tension properties. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1019 / 1028
页数:10
相关论文
共 50 条
  • [1] POST-FIRE MECHANICAL PROPERTIES OF BURNT SANDWICH COMPOSITE STRUCTURES
    Anjang, A.
    Chevali, V. S.
    Lattimer, B. Y.
    Case, S. W.
    Feih, S.
    Mouritz, A. P.
    20TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS, 2015,
  • [2] Experimental study of post-fire mechanical properties of a light prefabricated composite slabs
    Shen Qi
    Meng Zhiheng
    Wang Xintang
    2020 4TH INTERNATIONAL WORKSHOP ON RENEWABLE ENERGY AND DEVELOPMENT (IWRED 2020), 2020, 510
  • [3] Study of post-fire mechanical properties of the light composite slabs after suffering hydrocarbon fire
    Hao Yixiang
    Meng Zhiheng
    Wang Xintang
    2020 4TH INTERNATIONAL WORKSHOP ON RENEWABLE ENERGY AND DEVELOPMENT (IWRED 2020), 2020, 510
  • [4] Post-fire mechanical properties of carbon steel and safety factors for the reinstatement of steel structures
    Molkens, Tom
    Cashell, Katherine A.
    Rossi, Barbara
    ENGINEERING STRUCTURES, 2021, 234 (234)
  • [5] Post-fire mechanical properties of stainless steel cables
    Sun, Guojun
    Xiao, Shuo
    Yang, Yuan
    Li, Xiaohui
    Mensinger, Martin
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2020, 172
  • [6] Post-fire mechanical properties of marine polymer composites
    Mouritz, AP
    Mathys, Z
    COMPOSITE STRUCTURES, 1999, 47 (1-4) : 643 - 653
  • [7] Post-fire mechanical properties of high strength steels
    Li, H. T.
    Young, B.
    PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON ADVANCES IN STEEL-CONCRETE COMPOSITE STRUCTURES (ASCCS 2018), 2018, : 83 - 90
  • [8] Study on post-fire resistance of ceramsite foamed concrete sandwich composite slabs
    Liu, Chunyang
    Luan, Kaiye
    Su, Jing
    STRUCTURES, 2023, 58
  • [9] Study of post-fire mechanical behaviours of the light prefabricated composite floors after fire
    Pan Zhengguo
    Meng Zhiheng
    Wang Xintang
    2020 4TH INTERNATIONAL WORKSHOP ON RENEWABLE ENERGY AND DEVELOPMENT (IWRED 2020), 2020, 510
  • [10] Residual Properties of Geopolymer Concrete for Post-Fire Evaluation of Structures
    Kanagaraj, Balamurali
    Anand, Nammalvar
    Andrushia, Diana
    Kodur, Venkatesh
    MATERIALS, 2023, 16 (17)