A derivation of the number of minima of the Griewank function

被引:17
|
作者
Cho, Huidae [1 ]
Olivera, Francisco [1 ]
Guikema, Seth D. [2 ]
机构
[1] Texas A&M Univ, Dept Civil Engn, College Stn, TX 77843 USA
[2] Johns Hopkins Univ, Dept Geog & Environm Engn, Baltimore, MD 21218 USA
关键词
Griewank function; Local minima; Optimization; Multi-modal optimization;
D O I
10.1016/j.amc.2008.07.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Griewank function is commonly used to test the ability of different solution procedures to find local optima. It is important to know the exact number of minima of the function to support its use as a test function. However, to the best of our knowledge, no attempts have been made to analytically derive the number of minima. Because of the complex nature of the function surface, a numerical method is developed to restrict domain spaces to hyperrectangles satisfying certain conditions. Within these domain spaces, an analytical method to count the number of minima is derived and proposed as a recursive functional form. The numbers of minima for two search spaces are provided as a reference. (C) 2008 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:694 / 701
页数:8
相关论文
共 50 条
  • [1] A note on the Griewank test function
    Locatelli, M
    JOURNAL OF GLOBAL OPTIMIZATION, 2003, 25 (02) : 169 - 174
  • [2] A Note on the Griewank Test Function
    M. Locatelli
    Journal of Global Optimization, 2003, 25 : 169 - 174
  • [3] STATISTICAL ESTIMATION OF THE NUMBER OF MINIMA IN A FUNCTION WITH A FINITE NUMBER OF VARIABLES
    KAPLAN, TA
    PHYSICAL REVIEW B, 1986, 33 (04): : 2848 - 2850
  • [4] Unusual phenomenon of optimizing the Griewank function with the increase of dimension
    Huang, Yan
    Li, Jian-ping
    Wang, Peng
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2019, 20 (10) : 1344 - 1360
  • [5] Unusual phenomenon of optimizing the Griewank function with the increase of dimension
    Yan Huang
    Jian-ping Li
    Peng Wang
    Frontiers of Information Technology & Electronic Engineering, 2019, 20 : 1344 - 1360
  • [6] On the number of minima of a random polynomial
    Dedieu, Jean-Pierre
    Malajovich, Gregorio
    JOURNAL OF COMPLEXITY, 2008, 24 (02) : 89 - 108
  • [7] Euclidean minima of algebraic number fields
    Artūras Dubickas
    Min Sha
    Igor E. Shparlinski
    Archiv der Mathematik, 2024, 122 : 405 - 414
  • [8] Euclidean minima of algebraic number fields
    Dubickas, Arturas
    Sha, Min
    Shparlinski, Igor E.
    ARCHIV DER MATHEMATIK, 2024, 122 (04) : 405 - 414
  • [9] Estimates of the number of relative minima of lattices
    A. A. Illarionov
    Mathematical Notes, 2011, 89 : 245 - 254
  • [10] Estimates of the Number of Relative Minima of Lattices
    Illarionov, A. A.
    MATHEMATICAL NOTES, 2011, 89 (1-2) : 245 - 254