STATIC BEHAVIOR OF LONG-SPAN RC CABLE-STAYED BRIDGE WITH FRP CABLES

被引:0
|
作者
Wang, Xin [1 ]
Zeng, Fan-Xing [1 ]
Wu, Zhi-Shen [1 ]
机构
[1] Southeast Univ, Sch Civil Engn, Int Inst Urban Syst Engn, Nanjing 210096, Jiangsu, Peoples R China
关键词
FRP cable; hybrid design; cable-stayed bridge; cable design;
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Based on previous studies of thousand-meter scale cable-stayed bridge with FRP cables, the design method of cables and the static behavior of FRP long-span RC cable-stayed bridge are further investigated in this paper, which focuses on the limitation of insufficient use of FRP cables and potential extension of their applicable spans. The static and fatigue properties of FRP cables were first experimental studied, based on which design method aiming at high-efficiency use was proposed. A three-dimensional finite element simulation was adopted to study the static behavior of RC cable-stayed bridge with different FRP cable including carbon FRP (CFRP), basalt FRP (BFRP), hybrid basalt and carbon FRP (B/CFRP) and basalt and steel-wire FRP (B/SFRP). The major results show that (1) hybrid design of FRP can enhance the integrated behavior of FRP and obtain mechanical behavior required by cable-stayed bridge; (2) the design stress of FRP cable determined by fatigue strength benefits improving of the utilization efficiency and overcoming the limitation of strength and stiffness equivalent design methods; (3) compared to RC cable stayed bridge with steel cables, cable-stayed bridges with FRP cables exhibit sufficient stiffness under the state of serviceability and cause slight influence to the structural behavior of main girder.
引用
收藏
页码:957 / 964
页数:8
相关论文
共 50 条
  • [1] Long-span cable-stayed bridge with hybrid arrangement of FRP cables
    Yang, Yaqiang
    Wang, Xin
    Wu, Zhishen
    [J]. COMPOSITE STRUCTURES, 2020, 237
  • [2] Static and Dynamic Characteristics of a Long-Span Cable-Stayed Bridge with CFRP Cables
    Xie, Xu
    Li, Xiaozhang
    Shen, Yonggang
    [J]. MATERIALS, 2014, 7 (06) : 4854 - 4877
  • [3] Damping properties of FRP cables for long-span cable-stayed bridges
    Yaqiang Yang
    Xin Wang
    Zhishen Wu
    Changhai Peng
    [J]. Materials and Structures, 2016, 49 : 2701 - 2713
  • [4] Damping properties of FRP cables for long-span cable-stayed bridges
    Yang, Yaqiang
    Wang, Xin
    Wu, Zhishen
    Peng, Changhai
    [J]. MATERIALS AND STRUCTURES, 2016, 49 (07) : 2701 - 2713
  • [5] Fatigue life assessment of FRP cable for long-span cable-stayed bridge
    Feng, Bo
    Wang, Xin
    Wu, Zhishen
    [J]. COMPOSITE STRUCTURES, 2019, 210 : 159 - 166
  • [6] Evaluation of FRP and hybrid FRP cables for super long-span cable-stayed bridges
    Wang, Xin
    Wu, Zhishen
    [J]. COMPOSITE STRUCTURES, 2010, 92 (10) : 2582 - 2590
  • [7] Enhancement of basalt FRP by hybridization for long-span cable-stayed bridge
    Wang, Xin
    Wu, Zhishen
    Wu, Gang
    Zhu, Hong
    Zen, Fanxing
    [J]. COMPOSITES PART B-ENGINEERING, 2013, 44 (01) : 184 - 192
  • [8] VIBRATION CONTROL OF DIFFERENT FRP CABLES IN LONG-SPAN CABLE-STAYED BRIDGE UNDER INDIRECT EXCITATIONS
    Wang, Xin
    Wu, Zhishen
    [J]. JOURNAL OF EARTHQUAKE AND TSUNAMI, 2011, 5 (02) : 167 - 188
  • [9] Effectiveness of Smart Dampers for Hybrid FRP Cable in Long-Span Cable-Stayed Bridge
    Wang, Xin
    Wu, Zhishen
    [J]. ADVANCES IN FRP COMPOSITES IN CIVIL ENGINEERING, 2010, : 243 - 247
  • [10] Experimental Study of Vibration Characteristics of FRP Cables for Long-Span Cable-Stayed Bridges
    Yang, Yaqiang
    Wang, Xin
    Wu, Zhishen
    [J]. JOURNAL OF BRIDGE ENGINEERING, 2015, 20 (04)