Stabilization of vortex solitons by combining competing cubic-quintic nonlinearities with a finite degree of nonlocality

被引:42
|
作者
Shen, Ming [1 ]
Zhao, Hongwei [1 ]
Li, Bailing [1 ]
Shi, Jielong [1 ]
Wang, Qi [1 ]
Lee, Ray-Kuang [2 ]
机构
[1] Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China
[2] Natl Tsing Hua Univ, Inst Photon Technol, Hsinchu 300, Taiwan
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 02期
关键词
OPTICAL SOLITONS; LIQUID-CRYSTALS; MEDIA; AZIMUTHONS;
D O I
10.1103/PhysRevA.89.025804
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In contrast to an infinite degree of nonlocality, we demonstrate that vortex solitons in nonlinear media under competing self-focusing cubic and self-defocusing quintic nonlocal nonlinearities can be stabilized with a finite degree of nonlocality. Stable vortex solitons in the upper branch, bifurcated from the competing cubic-quintic nonlinearities, are found to be supported when the original double-ring refractive index change is transferred into a single-ring configuration due to the balance between diffusive nonlocality and defocusing quintic nonlinearity. The dynamics and stabilities of the vortex solitons are studied analytically and numerically.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Elliptical and rectangular solitons in media with competing cubic-quintic nonlinearities
    Zeng, Liangwei
    Belic, Milivoj R.
    Mihalache, Dumitru
    Zhu, Xing
    CHAOS SOLITONS & FRACTALS, 2024, 181
  • [2] Nonlocal dark solitons under competing cubic-quintic nonlinearities
    Chen, L.
    Wang, Q.
    Shen, M.
    Zhao, H.
    Lin, Y. -Y.
    Jeng, C. -C.
    Lee, R. -K.
    Krolikowski, W.
    OPTICS LETTERS, 2013, 38 (01) : 13 - 15
  • [3] Interactions of nonlocal dark solitons under competing cubic-quintic nonlinearities
    Chen, Wei
    Shen, Ming
    Kong, Qian
    Shi, Jielong
    Wang, Qi
    Krolikowski, Wieslaw
    OPTICS LETTERS, 2014, 39 (07) : 1764 - 1767
  • [4] Vortex solitons under competing nonlocal cubic and local quintic nonlinearities
    Shen, Ming
    Wu, Di
    Zhao, Hongwei
    Li, Bailing
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2014, 47 (15)
  • [5] Optical solitons under competing weakly nonlocal nonlinearity and cubic-quintic nonlinearities
    Wang, Gangwei
    Mirzazadeh, Mohammad
    Yao, Min
    Zhou, Qin
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2016, 10 (11-12): : 807 - 810
  • [6] Stability of vortex solitons in the cubic-quintic model
    Malomed, BA
    Crasovan, LC
    Mihalache, D
    PHYSICA D-NONLINEAR PHENOMENA, 2002, 161 (3-4) : 187 - 201
  • [7] Lattice solitons supported by competing cubic-quintic nonlinearity
    Wang, JD
    Ye, FW
    Dong, LW
    Cai, T
    Li, YP
    PHYSICS LETTERS A, 2005, 339 (1-2) : 74 - 82
  • [8] Families of fundamental and vortex solitons under competing cubic-quintic nonlinearity with complex potentials
    Weng, Yuanhang
    Wang, Hong
    Huang, Jing
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 64 : 66 - 73
  • [9] Stable vortex solitons in a vectorial cubic-quintic model
    Mihalache, D
    Mazilu, D
    Malomed, BA
    Lederer, F
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2004, 6 (05) : S341 - S350
  • [10] PT-symmetric couplers with competing cubic-quintic nonlinearities
    Burlak, Gennadiy
    Garcia-Paredes, Salomon
    Malomed, Boris A.
    CHAOS, 2016, 26 (11)