Modulation of contractions in the small intestine indicate desynchronization via supercritical Andronov-Hopf bifurcation

被引:0
|
作者
Parsons, Sean P. [1 ]
Huizinga, Jan D. [1 ]
机构
[1] McMaster Univ, Farncombe Family Digest Hlth Res Inst, 1280 Main St West,HSC 3N5, Hamilton, ON L8S 4K1, Canada
基金
加拿大健康研究院; 加拿大自然科学与工程研究理事会;
关键词
INTERSTITIAL-CELLS; MOTOR PATTERNS; OUTPUT SPECTRA; SYNCHRONIZATION; WAVES; OSCILLATIONS; MODEL;
D O I
10.1038/s41598-020-71999-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The small intestine is covered by a network of coupled oscillators, the interstitial cells of Cajal (ICC). These oscillators synchronize to generate rhythmic phase waves of contraction. At points of low coupling, oscillations desynchronise, frequency steps occur and every few waves terminates as a dislocation. The amplitude of contractions is modulated at frequency steps. The phase difference between contractions at a frequency step and a proximal reference point increased slowly at first and then, just at the dislocation, increased rapidly. Simultaneous frequency and amplitude modulation (AM/FM) results in a Fourier frequency spectrum with a lower sideband, a so called Lashinsky spectrum, and this was also seen in the small intestine. A model of the small intestine consisting of a chain of coupled Van der Pol oscillators, also demonstrated simultaneous AM/FM at frequency steps along with a Lashinsky spectrum. Simultaneous AM/FM, together with a Lashinsky spectrum, are predicted to occur when periodically-forced or mutually-coupled oscillators desynchronise via a supercritical Andronov-Hopf bifurcation and have been observed before in other physical systems of forced or coupled oscillators in plasma physics and electrical engineering. Thus motility patterns in the intestine can be understood from the viewpoint of very general dynamical principles.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Modulation of contractions in the small intestine indicate desynchronization via supercritical Andronov–Hopf bifurcation
    Sean P. Parsons
    Jan D. Huizinga
    Scientific Reports, 10
  • [2] On the Andronov-Hopf bifurcation theorem
    Izmailov, AF
    DIFFERENTIAL EQUATIONS, 2001, 37 (05) : 640 - 646
  • [3] The Andronov-Hopf bifurcation with weakly oscillating parameters
    M. G. Yumagulov
    L. S. Ibragimova
    S. M. Muzafarov
    I. D. Nurov
    Automation and Remote Control, 2008, 69 : 36 - 41
  • [4] Andronov-Hopf bifurcation in systems with Preisach operator
    A. A. Zhezherun
    N. A. Kuznetsov
    D. I. Rachinskii
    Doklady Mathematics, 2008, 78
  • [5] The Andronov-Hopf Bifurcation with 2:1 Resonance
    D. Yu. Volkov
    Journal of Mathematical Sciences, 2005, 128 (2) : 2831 - 2834
  • [6] A degenerate case of Andronov-Hopf bifurcation at infinity
    A. M. Krasnosel’skii
    Automation and Remote Control, 2010, 71 : 2307 - 2319
  • [7] Numerical construction of an Andronov-Hopf bifurcation surface
    Khalin, AL
    NONLINEAR CONTROL SYSTEMS 2001, VOLS 1-3, 2002, : 937 - 940
  • [8] A degenerate case of Andronov-Hopf bifurcation at infinity
    Krasnosel'skii, A. M.
    AUTOMATION AND REMOTE CONTROL, 2010, 71 (11) : 2307 - 2319
  • [9] The Andronov-Hopf bifurcation with weakly oscillating parameters
    Yumagulov, M. G.
    Ibragimova, L. S.
    Muzafarov, S. M.
    Nurov, I. D.
    AUTOMATION AND REMOTE CONTROL, 2008, 69 (01) : 36 - 41
  • [10] Andronov-Hopf Bifurcation in Systems with Preisach Operator
    Zhezherun, A. A.
    Kuznetsov, N. A.
    Rachinskii, D. I.
    DOKLADY MATHEMATICS, 2008, 78 (02) : 705 - 709