On Conjectures of A. Eremenko and A. Gabrielov for Quasi-Exactly Solvable Quartic

被引:2
|
作者
Mukhin, Evgeny [1 ]
Tarasov, Vitaly [1 ,2 ]
机构
[1] Purdue Univ, Indiana Univ, Dept Math Sci, Indianapolis, IN 46202 USA
[2] Steklov Math Inst, St Petersburg Branch, St Petersburg 191023, Russia
基金
美国国家科学基金会;
关键词
one-dimensional Schrodinger operators; quasi-exact solvability; bispectral dual; explicit integration;
D O I
10.1007/s11005-013-0611-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study polynomials p(x) satisfying a differential equation of the form p''-h'p' + Hp = 0, where h = x (3)/3 + ax and H is a polynomial. We prove a conjecture of A. Eremenko and A. Gabrielov.
引用
收藏
页码:653 / 663
页数:11
相关论文
共 50 条