Identifying topological order by entanglement entropy

被引:4
|
作者
Jiang, Hong-Chen [1 ]
Wang, Zhenghan [2 ]
Balents, Leon [1 ]
机构
[1] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Microsoft Stn Q, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
GROUND-STATE;
D O I
10.1038/NPHYS2465
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Topological phases are unique states of matter that incorporate long-range quantum entanglement and host exotic excitations with fractional quantum statistics. Here we report a practical method to identify topological phases in arbitrary realistic models by accurately calculating the topological entanglement entropy using the density matrix renormalization group (DMRG). We argue that the DMRG algorithm systematically selects a minimally entangled state from the quasi-degenerate ground states in a topological phase. This tendency explains both the success of our method and the absence of ground-state degeneracy in previous DMRG studies of topological phases. We demonstrate the effectiveness of our procedure by obtaining the topological entanglement entropy for several microscopic models, with an accuracy of the order of 10 3, when the circumference of the cylinder is around ten times the correlation length. As an example, we definitively show that the ground state of the quantum S = 1/2 antiferromagnet on the kagome lattice is a topological spin liquid, and strongly constrain the conditions for identification of this phase of matter.
引用
收藏
页码:902 / 905
页数:4
相关论文
共 50 条
  • [1] Identifying topological order by entanglement entropy
    Hong-Chen Jiang
    Zhenghan Wang
    Leon Balents
    Nature Physics, 2012, 8 : 902 - 905
  • [2] Identifying symmetry-protected topological order by entanglement entropy
    Li, Wei
    Weichselbaum, Andreas
    von Delft, Jan
    PHYSICAL REVIEW B, 2013, 88 (24):
  • [3] Identifying topological order in the Shastry-Sutherland model via entanglement entropy
    Ronquillo, David C.
    Peterson, Michael R.
    PHYSICAL REVIEW B, 2014, 90 (20):
  • [4] Entanglement, fidelity, and topological entropy in a quantum phase transition to topological order
    Hamma, A.
    Zhang, W.
    Haas, S.
    Lidar, D. A.
    PHYSICAL REVIEW B, 2008, 77 (15)
  • [5] Topological entanglement entropy
    Kitaev, A
    Preskill, J
    PHYSICAL REVIEW LETTERS, 2006, 96 (11)
  • [6] Entanglement entropy of gapped phases and topological order in three dimensions
    Grover, Tarun
    Turner, Ari M.
    Vishwanath, Ashvin
    PHYSICAL REVIEW B, 2011, 84 (19)
  • [7] Anyonic entanglement and topological entanglement entropy
    Bonderson, Parsa
    Knapp, Christina
    Patel, Kaushal
    ANNALS OF PHYSICS, 2017, 385 : 399 - 468
  • [8] Entanglement entropy for (3+1)-dimensional topological order with excitations
    Wen, Xueda
    He, Huan
    Tiwari, Apoorv
    Zheng, Yunqin
    Ye, Peng
    PHYSICAL REVIEW B, 2018, 97 (08)
  • [9] Detecting subsystem symmetry protected topological order via entanglement entropy
    Stephen, David T.
    Dreyer, Henrik
    Iqbal, Mohsin
    Schuch, Norbert
    PHYSICAL REVIEW B, 2019, 100 (11)
  • [10] Topological entanglement entropy and holography
    Pakman, Ari
    Parnachev, Andrei
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (07):