A Flow Perspective on Nonlinear Least-Squares Problems

被引:3
|
作者
Bock, Hans Georg [1 ]
Gutekunst, Juergen [1 ]
Potschka, Andreas [1 ]
Garces, Maria Elena Suarez [1 ]
机构
[1] Heidelberg Univ, Interdisciplinary Ctr Sci Comp IWR, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
关键词
Nonlinear least squares; Gauss-Newton; Globalization; Continuous flows; ALGORITHM; EQUATIONS;
D O I
10.1007/s10013-020-00441-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Just as the damped Newton method for the numerical solution of nonlinear algebraic problems can be interpreted as a forward Euler timestepping on the Newton flow equations, the damped Gauss-Newton method for nonlinear least squares problems is equivalent to forward Euler timestepping on the corresponding Gauss-Newton flow equations. We highlight the advantages of the Gauss-Newton flow and the Gauss-Newton method from a statistical and a numerical perspective in comparison with the Newton method, steepest descent, and the Levenberg-Marquardt method, which are respectively equivalent to Newton flow forward Euler, gradient flow forward Euler, and gradient flow backward Euler. We finally show an unconditional descent property for a generalized Gauss-Newton flow, which is linked to Krylov-Gauss-Newton methods for large-scale nonlinear least squares problems. We provide numerical results for large-scale problems: An academic generalized Rosenbrock function and a real-world bundle adjustment problem from 3D reconstruction based on 2D images.
引用
收藏
页码:987 / 1003
页数:17
相关论文
共 50 条
  • [1] A Flow Perspective on Nonlinear Least-Squares Problems
    Hans Georg Bock
    Jürgen Gutekunst
    Andreas Potschka
    María Elena Suaréz Garcés
    [J]. Vietnam Journal of Mathematics, 2020, 48 : 987 - 1003
  • [2] NONLINEAR LEAST-SQUARES PROBLEMS THAT SPLIT
    PEREYRA, V
    GOLUB, G
    [J]. ACTA CIENTIFICA VENEZOLANA, 1972, 23 : 28 - +
  • [3] A recursive algorithm for nonlinear least-squares problems
    A. Alessandri
    M. Cuneo
    S. Pagnan
    M. Sanguineti
    [J]. Computational Optimization and Applications, 2007, 38 : 195 - 216
  • [4] SOME SPECIAL NONLINEAR LEAST-SQUARES PROBLEMS
    OSBORNE, MR
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1975, 12 (04) : 571 - 592
  • [5] SOLUTION OF NONLINEAR LEAST-SQUARES PROBLEMS ON A MULTIPROCESSOR
    COLEMAN, TF
    PLASSMANN, PE
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1989, 384 : 44 - 60
  • [6] A recursive algorithm for nonlinear least-squares problems
    Alessandri, A.
    Cuneo, M.
    Pagnan, S.
    Sanguineti, M.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2007, 38 (02) : 195 - 216
  • [7] Least-squares method for Laminar flow problems
    Chattot, JJ
    [J]. COMPUTATIONAL FLUID DYNAMICS FOR THE 21ST CENTURY, PROCEEDINGS, 2001, 78 : 250 - 254
  • [8] A GEOMETRICAL-THEORY FOR NONLINEAR LEAST-SQUARES PROBLEMS
    CHAVENT, G
    [J]. LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1991, 159 : 14 - 27
  • [9] A NEW LINESEARCH ALGORITHM FOR NONLINEAR LEAST-SQUARES PROBLEMS
    LINDSTROM, P
    WEDIN, PA
    [J]. MATHEMATICAL PROGRAMMING, 1984, 29 (03) : 268 - 296
  • [10] AN ALGORITHM FOR SOLVING SPARSE NONLINEAR LEAST-SQUARES PROBLEMS
    MARTINEZ, JM
    [J]. COMPUTING, 1987, 39 (04) : 307 - 325