A METAHEURISTIC FOR A NUMERICAL APPROXIMATION TO THE MASS TRANSFER PROBLEM

被引:1
|
作者
Avendano-Garrido, Martha L. [1 ]
Gabriel-Arguelles, Jose R. [1 ]
Quintana-Torres, Ligia [1 ]
Mezura-Montes, Efren [2 ]
机构
[1] Univ Veracruz, Fac Math, Circuito Gonzalo Aguirre Beltran S-N, Xalapa 91090, Veracruz, Mexico
[2] Univ Veracruz, Artificial Intelligence Res Ctr, Sebastian Camacho 5, Xalapa 91000, Veracruz, Mexico
关键词
Monge-Kantorovich mass transfer problem; finite dimensional linear programming; transport problem; meta-heuristic algorithm; scatter search; TRANSPORT PROBLEM; DUALITY;
D O I
10.1515/amcs-2016-0053
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work presents an improvement of the approximation scheme for the Monge-Kantorovich (MK) mass transfer problem on compact spaces, which is studied by Gabriel et al. (2010), whose scheme discretizes the MK problem, reduced to solve a sequence of finite transport problems. The improvement presented in this work uses a metaheuristic algorithm inspired by scatter search in order to reduce the dimensionality of each transport problem. The new scheme solves a sequence of linear programming problems similar to the transport ones but with a lower dimension. The proposed metaheuristic is supported by a convergence theorem. Finally, examples with an exact solution are used to illustrate the performance of our proposal.
引用
收藏
页码:757 / 766
页数:10
相关论文
共 50 条
  • [1] Numerical solutions of the mass transfer problem
    Dubuc, Serge
    Kagabo, Issa
    RAIRO-OPERATIONS RESEARCH, 2006, 40 (01) : 1 - 17
  • [2] Numerical approximations to the mass transfer problem on compact spaces
    Rigoberto Gabriel, J.
    Gonzalez-Hernandez, Juan
    Lopez-Martinez, Raquiel R.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2010, 30 (04) : 1121 - 1136
  • [3] NUMERICAL SOLUTION OF THE PROBLEM OF MASS TRANSFER IN A WAVY LIQUID FILM.
    Lapin, A.M.
    Heat transfer. Soviet research, 1986, 18 (03): : 10 - 14
  • [4] Numerical Approximation of a Unilateral Obstacle Problem
    E. B. Mermri
    W. Han
    Journal of Optimization Theory and Applications, 2012, 153 : 177 - 194
  • [5] Numerical approximation for the oxygen diffusion problem
    Çatal, S
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 145 (2-3) : 361 - 369
  • [6] NUMERICAL APPROXIMATION OF A CHANNEL FLOW PROBLEM
    GAO, XQ
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1995, 16 (7-8) : 867 - 907
  • [7] Numerical Approximation of a Unilateral Obstacle Problem
    Mermri, E. B.
    Han, W.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 153 (01) : 177 - 194
  • [8] NUMERICAL APPROXIMATION OF A FREE BOUNDARY PROBLEM
    AMIRAT, Y
    ATIK, Y
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (04): : 203 - 206
  • [9] ON THE NUMERICAL APPROXIMATION OF AN OPTIMAL CORRECTION PROBLEM
    BANCORAIMBERT, MC
    CHOW, PL
    MENALDI, JL
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (06): : 970 - 991
  • [10] Numerical approximation for a nonlinear membrane problem.
    Kerdid, N
    Le Dret, H
    Saïdi, A
    COMPTES RENDUS MATHEMATIQUE, 2005, 340 (01) : 69 - 74