Density estimation in line transect sampling with grouped data by local least squares

被引:2
|
作者
Barabesi, L [1 ]
Greco, L [1 ]
Naddeo, S [1 ]
机构
[1] Univ Siena, Dipartimento Merodi Quantitat, I-53100 Siena, Italy
关键词
distance sampling; line transect methods; grouped data; local least squares;
D O I
10.1002/env.524
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A semiparametric estimator for animal density in distance sampling is proposed when grouped data are on hand. The estimation technique is based on a kernel-smoothed local least-square criterion function. suitably developed for this setting. The ne v method presents interesting theoretical properties and it produces accurate and robust estimators. as is shown in a Monte Carlo Study. Copyright (C) 2002 John Wiley Sons. Ltd.
引用
收藏
页码:167 / 176
页数:10
相关论文
共 50 条