Disequilibrium biosignatures over Earth history and implications for detecting exoplanet life

被引:123
|
作者
Krissansen-Totton, Joshua [1 ,2 ]
Olson, Stephanie [3 ,4 ]
Catling, David C. [1 ,2 ]
机构
[1] Univ Washington, Dept Earth & Space Sci, Astrobiol Program, Seattle, WA 98195 USA
[2] Univ Washington, Virtual Planetary Lab, Seattle, WA 98195 USA
[3] Univ Calif Riverside, Dept Earth Sci, Riverside, CA 92521 USA
[4] Univ Calif Riverside, NASA Astrobiol Inst, Riverside, CA 92521 USA
来源
SCIENCE ADVANCES | 2018年 / 4卷 / 01期
关键词
NITROGEN-FIXATION; METHANE FORMATION; PLATE-TECTONICS; ATMOSPHERIC CO2; ORGANIC HAZES; OXYGEN; SULFATE; OCEAN; PLANETS; PHOTOSYNTHESIS;
D O I
10.1126/sciadv.aao5747
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Chemical disequilibrium in planetary atmospheres has been proposed as a generalized method for detecting life on exoplanets through remote spectroscopy. Among solar system planets with substantial atmospheres, the modern Earth has the largest thermodynamic chemical disequilibrium due to the presence of life. However, how this disequilibrium changed over time and, in particular, the biogenic disequilibria maintained in the anoxic Archean or less oxic Proterozoic eons are unknown. We calculate the atmosphere-ocean disequilibrium in the Precambrian using conservative proxy-and model-based estimates of early atmospheric and oceanic compositions. We omit crustal solids because subsurface composition is not detectable on exoplanets, unlike above-surface volatiles. We find that (i) disequilibrium increased through time in step with the rise of oxygen; (ii) both the Proterozoic and Phanerozoicmay have had remotely detectable biogenic disequilibria due to the coexistence of O-2, N-2, and liquid water; and (iii) the Archean had a biogenic disequilibrium caused by the coexistence of N-2, CH4, CO2, and liquid water, which, for an exoplanet twin, may be remotely detectable. On the basis of this disequilibrium, we argue that the simultaneous detection of abundant CH4 and CO2 in a habitable exoplanet's atmosphere is a potential biosignature. Specifically, we show that methane mixing ratios greater than 10(-3) are potentially biogenic, whereas those exceeding 10(-2) are likely biogenic due to the difficulty in maintaining large abiotic methane fluxes to support high methane levels in anoxic atmospheres. Biogenicity would be strengthened by the absence of abundant CO, which should not coexist in a biological scenario.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Early evolution of purple retinal pigments on Earth and implications for exoplanet biosignatures
    DasSarma, Shiladitya
    Schwieterman, Edward W.
    INTERNATIONAL JOURNAL OF ASTROBIOLOGY, 2021, 20 (03) : 241 - 250
  • [2] Photochemical Runaway in Exoplanet Atmospheres: Implications for Biosignatures
    Ranjan, Sukrit
    Seager, Sara
    Zhan, Zhuchang
    Koll, Daniel D. B.
    Bains, William
    Petkowski, Janusz J.
    Huang, Jingcheng
    Lin, Zifan
    ASTROPHYSICAL JOURNAL, 2022, 930 (02):
  • [3] Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life
    Schwieterman, Edward W.
    Kiang, Nancy Y.
    Parenteau, Mary N.
    Harman, Chester E.
    DasSarma, Shiladitya
    Fisher, Theresa M.
    Arney, Giada N.
    Hartnett, Hilairy E.
    Reinhard, Christopher T.
    Olson, Stephanie L.
    Meadows, Victoria S.
    Cockell, Charles S.
    Walker, Sara I.
    Grenfell, John Lee
    Hegde, Siddharth
    Rugheimer, Sarah
    Hu, Renyu
    Lyons, Timothy W.
    ASTROBIOLOGY, 2018, 18 (06) : 663 - 708
  • [4] Detecting ET and the Implications for Life on Earth
    Peters, Ted
    THEOLOGY AND SCIENCE, 2010, 8 (02) : 123 - 125
  • [5] Inferring chemical disequilibrium biosignatures for Proterozoic Earth-like exoplanets
    Amber V. Young
    Tyler D. Robinson
    Joshua Krissansen-Totton
    Edward W. Schwieterman
    Nicholas F. Wogan
    Michael J. Way
    Linda E. Sohl
    Giada N. Arney
    Christopher T. Reinhard
    Michael R. Line
    David C. Catling
    James D. Windsor
    Nature Astronomy, 2024, 8 : 101 - 110
  • [6] Inferring chemical disequilibrium biosignatures for Proterozoic Earth-like exoplanets
    Young, Amber V.
    Robinson, Tyler D.
    Krissansen-Totton, Joshua
    Schwieterman, Edward W.
    Wogan, Nicholas F.
    Way, Michael J.
    Sohl, Linda E.
    Arney, Giada N.
    Reinhard, Christopher T.
    Line, Michael R.
    Catling, David C.
    Windsor, James D.
    NATURE ASTRONOMY, 2024, 8 (01) : 101 - 110
  • [7] The curious consistency of carbon biosignatures over billions of years of Earth-life coevolution
    Garcia, Amanda K.
    Cavanaugh, Colleen M.
    Kacar, Betul
    ISME JOURNAL, 2021, 15 (08): : 2183 - 2194
  • [8] The curious consistency of carbon biosignatures over billions of years of Earth-life coevolution
    Amanda K. Garcia
    Colleen M. Cavanaugh
    Betul Kacar
    The ISME Journal, 2021, 15 : 2183 - 2194
  • [9] Reassessing the biogenicity of Earth's oldest trace fossil with implications for biosignatures in the search for early life
    Grosch, Eugene G.
    McLoughlin, Nicola
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (23) : 8380 - 8385
  • [10] Traces of Ancient Life in Oceanic Basalt Preserved as Iron-Mineralized Ultrastructures: Implications for Detecting Extraterrestrial Biosignatures
    Qu, Yuangao
    Yin, Zongjun
    Kustatscher, Evelyn
    Nuetzel, Alexander
    Peckmann, Joern
    Vajda, Vivi
    Ivarsson, Magnus
    ASTROBIOLOGY, 2023, 23 (07) : 769 - 785