Sufficient dimension reduction in regressions across heterogeneous subpopulations

被引:3
|
作者
Ni, LQ [1 ]
Cook, RD
机构
[1] Univ Cent Florida, Dept Stat & Actuarial Sci, Orlando, FL 32816 USA
[2] Univ Minnesota, St Paul, MN 55108 USA
关键词
general partial sliced inverse regression; partial sliced inverse regression; sliced inverse regression; sufficient dimension reduction;
D O I
10.1111/j.1467-9868.2005.00534.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Sliced inverse regression is one of the widely used dimension reduction methods. Chiaromonte and co-workers extended this method to regressions with qualitative predictors and developed a method, partial sliced inverse regression, under the assumption that the covariance matrices of the continuous predictors are constant across the levels of the qualitative predictor. We extend partial sliced inverse regression by removing the restrictive homogeneous covariance condition. This extension, which significantly expands the applicability of the previous methodology, is based on a new estimation method that makes use of a non-linear least squares objective function.
引用
收藏
页码:89 / 107
页数:19
相关论文
共 50 条
  • [1] Sufficient Dimension Reduction for Censored Regressions
    Lu, Wenbin
    Li, Lexin
    [J]. BIOMETRICS, 2011, 67 (02) : 513 - 523
  • [2] Sufficient dimension reduction in regressions with categorical predictors
    Chiaromonte, F
    Cook, RD
    Li, B
    [J]. ANNALS OF STATISTICS, 2002, 30 (02): : 475 - 497
  • [3] SUFFICIENT DIMENSION REDUCTION IN REGRESSIONS WITH MISSING PREDICTORS
    Zhu, Liping
    Wang, Tao
    Zhu, Lixing
    [J]. STATISTICA SINICA, 2012, 22 (04) : 1611 - 1637
  • [4] Optimal sufficient dimension reduction in regressions with categorical predictors
    Wen, Xuerong
    Cook, R. Dennis
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (06) : 1961 - 1978
  • [5] Sufficient dimension reduction in multivariate regressions with categorical predictors
    Hilafu, Haileab
    Yin, Xiangrong
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 63 : 139 - 147
  • [6] Sufficient dimension reduction in regressions through cumulative Hessian directions
    Zhang, Li-Mei
    Zhu, Li-Ping
    Zhu, Li-Xing
    [J]. STATISTICS AND COMPUTING, 2011, 21 (03) : 325 - 334
  • [7] Sufficient dimension reduction in regressions through cumulative Hessian directions
    Li-Mei Zhang
    Li-Ping Zhu
    Li-Xing Zhu
    [J]. Statistics and Computing, 2011, 21 : 325 - 334
  • [8] Structured Ordinary Least Squares: A Sufficient Dimension Reduction approach for regressions with partitioned predictors and heterogeneous units
    Liu, Yang
    Chiaromonte, Francesca
    Li, Bing
    [J]. BIOMETRICS, 2017, 73 (02) : 529 - 539
  • [9] DISTRIBUTED SUFFICIENT DIMENSION REDUCTION FOR HETEROGENEOUS MASSIVE DATA
    Xu, Kelin
    Zhu, Liping
    Fan, Jianqing
    [J]. STATISTICA SINICA, 2022, 32 : 2455 - 2476
  • [10] ON DIMENSION REDUCTION IN REGRESSIONS WITH MULTIVARIATE RESPONSES
    Zhu, Li-Ping
    Zhu, Li-Xing
    Wen, Song-Qiao
    [J]. STATISTICA SINICA, 2010, 20 (03) : 1291 - 1307