The design of reverse osmosis systems with multiple-feed and multiple-product

被引:30
|
作者
Lu, Yanyue [1 ]
Liao, Anping [1 ]
Hu, Yangdong [2 ]
机构
[1] Guangxi Univ Nationalities, Guangxi Higher Educ Inst, Key Lab Chem & Biol Transformat Proc, Sch Chem & Chem Engn, Nanning 530006, Peoples R China
[2] Ocean Univ China, Coll Chem & Chem Engn, Qingdao 266003, Peoples R China
关键词
Reverse osmosis; Desalination; Optimum design; Mathematic model; Process synthesis; SEAWATER DESALINATION; OPTIMUM DESIGN; RO; OPTIMIZATION; NETWORKS; PERFORMANCE; WATER;
D O I
10.1016/j.desal.2012.08.025
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A reverse osmosis (RU) desalination process with multiple-feed and multiple-product is the main focus of this work. A process synthesis-based optimization technique has been developed for the design of the RO system. The adoption of this approach provides an economically attractive desalination scheme. Membrane separation units employing the spiral wound reverse osmosis elements were approximated by the pressure vessel model presented in this paper, which takes into account the pressure drop and concentration changes in the membrane channel. A simplified superstructure that contains all the feasible design for this desalination problem has also been presented. In this structure representation, the stream split ratios and logical expressions of stream mixing were employed, which can make the mathematical model to be easily handled. The optimum design problem is formulated as a mixed-integer non-linear programming (MINLP) problem, which minimizes the total annualized cost of the RU system. The cost equation relating the capital and operating cost to the design variables, as well as the structural variables has been introduced in the objective function. The solution of the problem includes the optimal system structure and operating conditions, and the optimal streams distribution. The design method could also be used for the optimal selection of the type of membrane elements in each stage and the optimal number of membrane elements in each pressure vessel. The effectiveness of this design methodology has been demonstrated by solving a desalination case. The comparisons of several alternate schemes indicate that the feed position of streams and outlets of the system are the critical variables that should be optimized for the RO system design. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:42 / 50
页数:9
相关论文
共 50 条
  • [1] MULTIPLE-FEED SYSTEMS FOR OBJECTIVES
    SHELTON, P
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1965, AP13 (06) : 992 - &
  • [2] APPROXIMATE DESIGN OF MULTIPLE-FEED SIDE-STREAM DISTILLATION SYSTEMS
    NIKOLAIDES, IP
    MALONE, MF
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1987, 26 (09) : 1839 - 1845
  • [3] MULTIPLE-FEED, PURE-PRODUCT SEPARATION SYSTEM SYNTHESIS
    MOCSNY, D
    GOVIND, R
    COMPUTERS & CHEMICAL ENGINEERING, 1989, 13 (07) : 839 - 849
  • [4] Multiple-Product Firms and Product Switching
    Bernard, Andrew B.
    Redding, Stephen J.
    Schott, Peter K.
    AMERICAN ECONOMIC REVIEW, 2010, 100 (01): : 70 - 97
  • [5] HOW TO FIND THE MINIMUM REFLUX FOR MULTICOMPONENT SYSTEMS IN MULTIPLE-FEED COLUMNS
    YAWS, CL
    LI, KY
    FANG, CS
    CHEMICAL ENGINEERING, 1981, 88 (11) : 63 - 65
  • [6] On the dimensionality and complexity of multiple-feed attainable regions
    Zimucha, Dean Kudakwashe
    Ming, David
    Low, Michelle
    CHEMICAL ENGINEERING SCIENCE, 2018, 192 : 380 - 390
  • [7] Price Discrimination and the Multiple-Product Firm
    Clemens, Eli W.
    REVIEW OF ECONOMIC STUDIES, 1951, 19 : 1 - 11
  • [8] Demand allocation in multiple-product, multiple-facility, make-to-stock systems
    Benjaafar, S
    Elhafsi, M
    de Véricourt, F
    MANAGEMENT SCIENCE, 2004, 50 (10) : 1431 - 1448
  • [9] Multiple-Product Hybrid Additive Manufacturing
    Antsiferov, S.I.
    Matusov, M.G.
    Karpachev, D.V.
    Sychev, E.A.
    Karachevtseva, A.V.
    Russian Engineering Research, 2024, 44 (10) : 1495 - 1499
  • [10] Axial Ratio Analysis of a Multiple-Feed Microstrip Antenna
    Sun, Li
    Lu, Yilong
    Ou, Gang
    APMC: 2008 ASIA PACIFIC MICROWAVE CONFERENCE (APMC 2008), VOLS 1-5, 2008, : 1205 - 1208