Discovering Semantic Vocabularies for Cross-Media Retrieval

被引:12
|
作者
Habibian, Amirhossein [1 ]
Mensink, Thomas [1 ]
Snoek, Cees G. M. [1 ,2 ]
机构
[1] Univ Amsterdam, NL-1012 WX Amsterdam, Netherlands
[2] Qualcomm Res Netherlands, Amsterdam, Netherlands
关键词
D O I
10.1145/2671188.2749403
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a data-driven approach for cross-media retrieval by automatically learning its underlying semantic vocabulary. Different from the existing semantic vocabularies, which are manually pre-defined and annotated, we automatically discover the vocabulary concepts and their annotations from multimedia collections. To this end, we apply a probabilistic topic model on the text available in the collection to extract its semantic structure. Moreover, we propose a learning to rank framework, to effectively learn the concept classifiers from the extracted annotations. We evaluate the discovered semantic vocabulary for cross-media retrieval on three datasets of image/text and video/text pairs. Our experiments demonstrate that the discovered vocabulary does not require any manual labeling to outperform three recent alternatives for cross-media retrieval.
引用
收藏
页码:131 / 138
页数:8
相关论文
共 50 条
  • [1] Learning semantic correlations for cross-media retrieval
    Wu, Fei
    Zhang, Hong
    Zhuang, Yueting
    2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS, 2006, : 1465 - +
  • [2] Cross-media retrieval with collective deep semantic learning
    Bin Zhang
    Lei Zhu
    Jiande Sun
    Huaxiang Zhang
    Multimedia Tools and Applications, 2018, 77 : 22247 - 22266
  • [3] Cross-media retrieval with collective deep semantic learning
    Zhang, Bin
    Zhu, Lei
    Sun, Jiande
    Zhang, Huaxiang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (17) : 22247 - 22266
  • [4] Online latent semantic hashing for cross-media retrieval
    Yao, Tao
    Wang, Gang
    Yan, Lianshan
    Kong, Xiangwei
    Su, Qingtang
    Zhang, Caiming
    Tian, Qi
    PATTERN RECOGNITION, 2019, 89 : 1 - 11
  • [5] Semantic convex matrix factorisation for cross-media retrieval
    Fang, Yixian
    Ren, Yuwei
    Zhang, Huaxiang
    IET IMAGE PROCESSING, 2019, 13 (01) : 196 - 205
  • [6] Semantic-based cross-media image retrieval
    Oumohmed, AI
    Mignotte, M
    Nie, JY
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PT 2, PROCEEDINGS, 2005, 3687 : 414 - 423
  • [7] ENHANCED ISOMORPHIC SEMANTIC REPRESENTATION FOR CROSS-MEDIA RETRIEVAL
    Liu, Ting
    Zhao, Yao
    Wei, Shikui
    Wei, Yunchao
    Liao, Lixin
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2017, : 967 - 972
  • [8] Semantic Topic Multimodal Hashing for Cross-Media Retrieval
    Wang, Di
    Gao, Xinbo
    Wang, Xiumei
    He, Lihuo
    PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 3890 - 3896
  • [9] Discrete Semantic Alignment Hashing for Cross-Media Retrieval
    Yao, Tao
    Kong, Xiangwei
    Fu, Haiyan
    Tian, Qi
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (12) : 4896 - 4907
  • [10] Two-stage semantic matching for cross-media retrieval
    Xu G.
    Xu L.
    Zhang M.
    Li X.
    International Journal of Performability Engineering, 2018, 14 (04) : 795 - 804