The geometrical meaning of the Kantorovich-Wielandt inequalities

被引:14
|
作者
Gustafson, K [1 ]
机构
[1] Univ Colorado, Dept Math, Boulder, CO 80309 USA
关键词
operator trigonometry; Kantorovich-Wielandt; anti-eigenvector;
D O I
10.1016/S0024-3795(99)00106-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Kantorovich-Wielandt angle theta(A) and the author's operator angle phi(A) are related by cos phi(A(2)) = sin theta(A). Here A is an arbitrary symmetric positive definite (SPD) matrix. The relationship of these two different geometrical perspectives is discussed. An extension to arbitrary nonsingular matrices A is given. A related four-way relationship with the operator trigonometry, strengthened CBS constants, and domain decomposition methods is noted. (C) 1999 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:143 / 151
页数:9
相关论文
共 50 条
  • [1] Generalizations of the Kantorovich and Wielandt Inequalities with Applications to Statistics
    Zhang, Yunzhi
    Guo, Xiaotian
    Liu, Jianzhong
    Chen, Xueping
    MATHEMATICS, 2024, 12 (18)
  • [2] Improved Kantorovich and Wielandt Operator Inequalities for Positive Linear Maps
    Liao, Wenshi
    Wu, Junliang
    FILOMAT, 2017, 31 (03) : 871 - 876
  • [3] Equivalence of the Wielandt inequality and the Kantorovich inequality
    Zhang, FZ
    LINEAR & MULTILINEAR ALGEBRA, 2001, 48 (03): : 275 - 279
  • [4] Operator inequalities of Malamud and Wielandt
    Fujii, JI
    Nakamoto, R
    Seo, Y
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 326 (1-3) : 101 - 109
  • [5] Generalized Wielandt and Cauchy-Schwarz inequalities
    Hasan, MA
    PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2004, : 2142 - 2147
  • [6] Kantorovich theorem for variational inequalities
    Wang, ZY
    Shen, ZH
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2004, 25 (11) : 1291 - 1297
  • [7] KANTOROVICH-TYPE INEQUALITIES
    CLAUSING, A
    AMERICAN MATHEMATICAL MONTHLY, 1982, 89 (05): : 314 - &
  • [8] On Improvements of Kantorovich Type Inequalities
    Zhao, Chang-Jian
    Cheung, Wing-Sum
    MATHEMATICS, 2019, 7 (03):
  • [9] Sobolev-Kantorovich Inequalities
    Ledoux, Michel
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2015, 3 (01): : 157 - 166
  • [10] A note on Kantorovich and Ando inequalities
    Sababheh, Mohammad
    Moradi, Hamid Reza
    Gumus, Ibrahim Halil
    Furuichi, Shigeru
    FILOMAT, 2023, 37 (13) : 4171 - 4183