Bifurcations in noisy nonlinear networks and systems

被引:0
|
作者
Mathis, W. [1 ]
机构
[1] Univ Hannover, TET, Dept Elect Engn & Comp Sci, D-30167 Hannover, Germany
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we discuss the analysis of noisy nonlinear systems and circuits. Especially we consider circuits with an oscillatory behavior and limit cycles, respectively. Moreover, we study the Andronov-Hopf bifurcation in sinusoidal electrical oscillators under noisy disturbance. For this purpose the deterministic description of oscillators must be generalized using the concept of probability functions as well as invariant measures. It turns out that these two bifurcation approaches are not equivalent in general. We illustrate these noisy bifurcation concepts by means of a Meissner oscillator including a transistor.
引用
收藏
页码:305 / 313
页数:9
相关论文
共 50 条
  • [1] Coherence resonance at noisy precursors of bifurcations in nonlinear dynamical systems
    Neiman, A
    Saparin, PI
    Stone, L
    [J]. PHYSICAL REVIEW E, 1997, 56 (01): : 270 - 273
  • [2] On Bifurcations in Nonlinear Consensus Networks
    Vaibhav Srivastava
    Jeff Moehlis
    Francesco Bullo
    [J]. Journal of Nonlinear Science, 2011, 21 : 875 - 895
  • [3] On Bifurcations in Nonlinear Consensus Networks
    Srivastava, Vaibhav
    Moehlis, Jeff
    Bullo, Francesco
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2011, 21 (06) : 875 - 895
  • [4] Bifurcations in nonlinear discontinuous systems
    Leine, RI
    van Campen, DH
    van de Vrande, BL
    [J]. NONLINEAR DYNAMICS, 2000, 23 (02) : 105 - 164
  • [5] Bifurcations in Nonlinear Discontinuous Systems
    R. I. Leine
    D. H. van Campen
    B. L. van de Vrande
    [J]. Nonlinear Dynamics, 2000, 23 : 105 - 164
  • [6] An observer for nonlinear noisy systems
    García, RA
    Troparevsky, MI
    Aguilar, JLM
    [J]. LATIN AMERICAN APPLIED RESEARCH, 2000, 30 (02) : 87 - 92
  • [7] Discontinuity Induced Bifurcations in Nonlinear Systems
    Santhosh, B.
    Narayanan, S.
    Padmanabhan, C.
    [J]. IUTAM SYMPOSIUM ANALYTICAL METHODS IN NONLINEAR DYNAMICS, 2016, 19 : 219 - 227
  • [8] Nonautonomous Bifurcations in Nonlinear Impulsive Systems
    Marat Akhmet
    Ardak Kashkynbayev
    [J]. Differential Equations and Dynamical Systems, 2020, 28 : 177 - 190
  • [9] Gap bifurcations in nonlinear dynamical systems
    Rizzato, FB
    Pakter, R
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (18)
  • [10] Nonlinear optical systems with multiparameter bifurcations
    Wataghin, V
    Nikolaev, IP
    Degtiarev, EV
    Larichev, AV
    Nesterouk, MY
    [J]. LASER PHYSICS, 2001, 11 (04) : 555 - 561