Simulation of a fully coupled thermo-hydro-mechanical system in freezing and thawing rock

被引:90
|
作者
Neaupane, KM [1 ]
Yamabe, T [1 ]
Yoshinaka, R [1 ]
机构
[1] Saitama Univ, Dept Civil & Environm Engn, Urawa, Saitama 338, Japan
关键词
D O I
10.1016/S0148-9062(99)00026-1
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
This paper describes the application of a numerical model of thermal-mechanical-fluid flow coupling system to the simulation of laboratory freezing and thawing experiments on rocks. A theoretical formulation that accommodates a linear stress-strain constitutive relationship is presented and a two-dimensional (plane stress) numerical modeling is performed based on the finite element method applied to thermo-poro-elasticity. As the primary objective of this research is to simulate the freezing and thawing process, the developed code takes into account the phase change of pore water during freezing. It is found from the numerical simulation that a relatively good prediction can be made of temperature transfer and deformation behavior within the elastic deformation limit. In some cases, however, large deformation results from the freezing processes, leading to material failure. Future research should therefore take into account irreversible and plastic effects. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:563 / 580
页数:18
相关论文
共 50 条
  • [1] A fully coupled thermo-hydro-mechanical model for rock mass under freezing/thawing condition
    Kang, Yongshui
    Liu, Quansheng
    Huang, Shibing
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2013, 95 : 19 - 26
  • [2] A fully coupled thermo-hydro-mechanical model including the determination of coupling parameters for freezing rock
    Huang, Shibing
    Liu, Quansheng
    Cheng, Aiping
    Liu, Yanzhang
    Liu, Guofeng
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2018, 103 : 205 - 214
  • [3] Application of a Thermo-Hydro-Mechanical Model for Freezing and Thawing
    Haxaire, A.
    Aukenthaler, M.
    Brinkgreve, R. B. J.
    ISRM EUROPEAN ROCK MECHANICS SYMPOSIUM EUROCK 2017, 2017, 191 : 74 - 81
  • [4] A fully coupled thermo-hydro-mechanical elastoplastic damage model for fractured rock
    Nikolaos Reppas
    Yilin Gui
    Ben Wetenhall
    Colin T. Davie
    Jianjun Ma
    Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2024, 10
  • [5] Numerical simulation of coupled Thermo-Hydro-Mechanical processes in rock salt
    Pudewills, A.
    MECHANICAL BEHAVIOR OF SALT VII, 2012, : 115 - 122
  • [6] A fully coupled thermo-hydro-mechanical elastoplastic damage model for fractured rock
    Reppas, Nikolaos
    Gui, Yilin
    Wetenhall, Ben
    Davie, Colin T.
    Ma, Jianjun
    GEOMECHANICS AND GEOPHYSICS FOR GEO-ENERGY AND GEO-RESOURCES, 2024, 10 (01)
  • [7] Thermo-hydro-mechanical coupled material point method for modeling freezing and thawing of porous media
    Yu, Jidu
    Zhao, Jidong
    Zhao, Shiwei
    Liang, Weijian
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2024, 48 (13) : 3308 - 3349
  • [8] A fully coupled thermo-hydro-mechanical model for fractured rock masses in cold regions
    Liu, Naifei
    Li, Ning
    Wang, Shuangjie
    Li, Guofeng
    Song, Zhanping
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2023, 205
  • [9] Studies on coupled thermo-hydro-mechanical model of hot rock
    Ma, Jie
    SUSTAINABLE DEVELOPMENT OF URBAN AND RURAL AREAS, 2014, 507 : 864 - 868
  • [10] A fully coupled thermo-hydro-mechanical nonlinear model for a frozen medium
    Neaupane, KM
    Yamabe, T
    COMPUTERS AND GEOTECHNICS, 2001, 28 (08) : 613 - 637