Prediction of significant wave height in hurricane area of the Atlantic Ocean using the Bi-LSTM with attention model

被引:35
|
作者
Luo, Qin-Rui [1 ]
Xu, Hang [1 ]
Bai, Long-Hu [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, State Key Lab Ocean Engn, Shanghai 200240, Peoples R China
[2] Huawei Technol Co Ltd, Shanghai 201206, Peoples R China
基金
中国国家自然科学基金;
关键词
Significant wave height; Attention mechanism; Long short-term memory; Lead time; BLA model; ARTIFICIAL NEURAL-NETWORK; COASTAL REGIONS; SHALLOW-WATER; SEA; GENERATION; PARAMETERS; ENERGY;
D O I
10.1016/j.oceaneng.2022.112747
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The Bi-LSTM with attention (BLA) model is proposed to predict wave height in the hurricane area of the Atlantic Ocean. Four data features (wave height, wind speed, wind direction, and wave direction) collected at five buoy stations are selected as model inputs, while future wave height is specified as model output. Predictions are obtained for 1-h, 3-h, 6-h, and 12-h lead times. Two evaluation metrics are introduced to evaluate the accuracy and stability of the model. Influencing factors such as input-output ratio and input feature combination are studied. For the input-output ratio, it is found that the shorter lead time requires a larger ratio, with a ratio of 9:1 required for 1-h lead time prediction, with 3:1 for 3-h prediction, 2:1 for 6-h prediction, and 1:1 for 12-h prediction. For the input feature combination, the combination of the wave height, the wind speed, and the coupling of the wind direction and wave direction via the cosine function holds the best prediction performance in 1-h and 3-h lead time prediction. And for 6-h and 12-h forecasts, a combination of wave height and wind speed is best. By comparing overall evaluation metrics and extreme wave height prediction results of the BLA model with those of the Bi-LSTM, LSTM, and LSTM with attention models, we notice that the BLA model has the best and most stable prediction performance.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] An effective deep learning model for spatial-temporal significant wave height prediction in the Atlantic hurricane area
    Ouyang, Zhuxin
    Zhao, Yaming
    Zhang, Dianjun
    Zhang, Xuefeng
    OCEAN ENGINEERING, 2025, 317
  • [2] A Hybrid Model of Conformer and LSTM for Ocean Wave Height Prediction
    Xiao, Jiawei
    Lu, Peng
    APPLIED SCIENCES-BASEL, 2024, 14 (14):
  • [3] A watershed water quality prediction model based on attention mechanism and Bi-LSTM
    Qiang Zhang
    Ruiqi Wang
    Ying Qi
    Fei Wen
    Environmental Science and Pollution Research, 2022, 29 : 75664 - 75680
  • [4] A watershed water quality prediction model based on attention mechanism and Bi-LSTM
    Zhang, Qiang
    Wang, Ruiqi
    Qi, Ying
    Wen, Fei
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (50) : 75664 - 75680
  • [5] Sandstorm Detection Using Attention Bi-LSTM UNet
    Mahmoud, Amira S.
    El-Morshedy, Rasha M.
    Metwalli, Mohamed R.
    Mostafa, Marwa S.
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2024, : 1065 - 1076
  • [6] ABCNet: A comprehensive highway visibility prediction model based on attention, Bi-LSTM and CNN
    Li, Wen
    Yang, Xuekun
    Yuan, Guowu
    Xu, Dan
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2024, 21 (03) : 4397 - 4420
  • [7] Nearshore significant wave height prediction based on MIC-LSTM model
    Li, Yan
    Qin, Xue
    Zhu, Daoheng
    EARTH SCIENCE INFORMATICS, 2023, 16 (04) : 3963 - 3979
  • [8] PREDICTION OF SIGNIFICANT WAVE HEIGHT BASED ON MULTIVARIABLE DSD-LSTM MODEL
    Pang, Junheng
    Huang, Weinan
    Dong, Sheng
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (07): : 121 - 127
  • [9] Nearshore significant wave height prediction based on MIC-LSTM model
    Yan Li
    Xue Qin
    Daoheng Zhu
    Earth Science Informatics, 2023, 16 : 3963 - 3979
  • [10] Prediction of Bitcoin Price Using Bi-LSTM Network
    Nithyakani, P.
    Tom, Rijo Jackson
    Gupta, Piyush
    Shanthini, A.
    John, Vivia Mary
    Sharma, Vipul
    2021 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2021,