Scene Classification with a Sparse Set of Salient Regions

被引:0
|
作者
Borji, Ali [1 ]
Itti, Laurent [1 ]
机构
[1] Univ So Calif, Dept Comp Sci, Los Angeles, CA 90089 USA
关键词
VISUAL-ATTENTION; RECOGNITION; LOCALIZATION; FEATURES; SCALE; MODEL;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work proposes an approach for scene classification by extracting and matching visual features only at the focuses of visual attention instead of the entire scene. Analysis over a database of natural scenes demonstrates that regions proposed by the saliency-based model of visual attention are robust to image transformations. Using a nearest neighbor classifier and a distance measure defined over the salient regions, we obtained 97.35% and 78.28% classification rates with SIFT and C2 features from the HMAX model at 5 salient regions covering at most 31% of the image. Classification with features extracted from the entire image results in 99.3% and 82.32% using SIFT and C2 features, respectively. Comparing attentional and adhoc approaches shows that classification rate of the first approach is 0.95 of the second. Overall, our results prove that efficient scene classification, in terms of reducing the complexity of feature extraction is possible without a significant drop in performance.
引用
收藏
页码:1902 / 1908
页数:7
相关论文
共 50 条
  • [1] Image categorization using a semantic hierarchy model with sparse set of salient regions
    Chunping Liu
    Yang Zheng
    Shengrong Gong
    Frontiers of Computer Science, 2013, 7 : 838 - 851
  • [2] Image categorization using a semantic hierarchy model with sparse set of salient regions
    Liu, Chunping
    Zheng, Yang
    Gong, Shengrong
    FRONTIERS OF COMPUTER SCIENCE, 2013, 7 (06) : 838 - 851
  • [3] Image categorization using a semantic hierarchy model with sparse set of salient regions
    Chunping LIU
    Yang ZHENG
    Shengrong GONG
    Frontiers of Computer Science, 2013, 7 (06) : 838 - 851
  • [4] Detecting salient regions in a bi-temporal hyperspectral scene by iterating clustering and classification
    Appice, Annalisa
    Guccione, Pietro
    Acciaro, Emilio
    Malerba, Donato
    APPLIED INTELLIGENCE, 2020, 50 (10) : 3179 - 3200
  • [5] Detecting salient regions in a bi-temporal hyperspectral scene by iterating clustering and classification
    Annalisa Appice
    Pietro Guccione
    Emilio Acciaro
    Donato Malerba
    Applied Intelligence, 2020, 50 : 3179 - 3200
  • [6] Image Signature: Highlighting Sparse Salient Regions
    Hou, Xiaodi
    Harel, Jonathan
    Koch, Christof
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (01) : 194 - 201
  • [7] Efficient classification using salient regions
    Yang, Bing
    Xu, Duanqing
    OPTICAL ENGINEERING, 2012, 51 (07)
  • [8] Sparse Representation Frameworks for Acoustic Scene Classification
    Tyagi, Akansha
    Rajan, Padmanabhan
    SPEECH AND COMPUTER, SPECOM 2023, PT I, 2023, 14338 : 177 - 188
  • [9] Efficient Scene Matching Using Salient Regions Under Spatial Constraints
    Jin, Zhenlu
    Wang, Xuezhi
    Moran, William
    Pan, Quan
    Zhao, Chunhui
    2014 17TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2014,
  • [10] Color image fuzzy classification algorithm with salient regions
    Zhang, Mingxm
    Shang, Zhaowei
    Shen, Junyi
    Information Technology Journal, 2008, 7 (04) : 560 - 569