A hybrid ARIMA-LSTM model optimized by BP in the forecast of outpatient visits

被引:20
|
作者
Deng, Yamin [1 ,2 ]
Fan, Huifang [1 ]
Wu, Shiman [1 ]
机构
[1] Shanxi Med Univ, Hosp 1, Dept Stat, Taiyuan, Shanxi, Peoples R China
[2] Shanxi Med Univ, Sch Publ Hlth, Div Hlth Stat, Taiyuan, Shanxi, Peoples R China
关键词
Hybrid forecasting model; Neural networks; ARIMA; LSTM; BP; Outpatient visits;
D O I
10.1007/s12652-020-02602-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Effective hospital outpatient forecasting is an important prerequisite for modern hospitals to implement intelligent management of medical resources. As outpatient visits flow may be complex and diverse volatility, we propose a hybrid Autoregressive Integrated Moving Average (ARIMA)-Long Short Term Memory (LSTM) model, which hybridizes the ARIMA model and LSTM model to obtain the linear tendency and nonlinear tendency correspondingly. Instead of the traditional methods that artificially assume the linear components and nonlinear components should be linearly added, we propose employing backpropagation neural networks (BP) to imitate the real relationship between them. The proposed hybrid model is applied to real data analysis and experimental analysis to justify its performance against single ARIMA model, single LSTM model and the hybrid ARIMA-LSTM model based on the traditional method. Compared with competitors, the proposed hybrid model produced the lowest RMSE, MAE and MAPE. It achieves more accurate and stable prediction. Therefore, the proposed model can be a promising alternative in outpatient visit predictive problems.
引用
收藏
页码:5517 / 5527
页数:11
相关论文
共 50 条
  • [1] A hybrid ARIMA-LSTM model optimized by BP in the forecast of outpatient visits
    Yamin Deng
    Huifang Fan
    Shiman Wu
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 5517 - 5527
  • [2] Prediction of COVID-19 Data Using an ARIMA-LSTM Hybrid Forecast Model
    Jin, Yongchao
    Wang, Renfang
    Zhuang, Xiaodie
    Wang, Kenan
    Wang, Honglian
    Wang, Chenxi
    Wang, Xiyin
    MATHEMATICS, 2022, 10 (21)
  • [3] Forecasting Indonesia Exports using a Hybrid Model ARIMA-LSTM
    Dave, Emmanuel
    Leonardo, Albert
    Jeanice, Marethia
    Hanafiah, Novita
    5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND COMPUTATIONAL INTELLIGENCE 2020, 2021, 179 : 480 - 487
  • [4] Application of a hybrid ARIMA-LSTM model based on the SPEI for drought forecasting
    Xu, Dehe
    Zhang, Qi
    Ding, Yan
    Zhang, De
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (03) : 4128 - 4144
  • [5] Application of a hybrid ARIMA-LSTM model based on the SPEI for drought forecasting
    Dehe Xu
    Qi Zhang
    Yan Ding
    De Zhang
    Environmental Science and Pollution Research, 2022, 29 : 4128 - 4144
  • [6] Prediction of COVID-19 Data Using Improved ARIMA-LSTM Hybrid Forecast Models
    Jin, Yong-Chao
    Cao, Qian
    Wang, Ke-Nan
    Zhou, Yuan
    Cao, Yan-Peng
    Wang, Xi-Yin
    IEEE ACCESS, 2023, 11 : 67956 - 67967
  • [7] Stock market prediction using ARIMA-LSTM hybrid
    Pandya, Aayushi
    Kapoor, Vivek
    Joshi, Apash
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2024, 45 (04): : 1129 - 1139
  • [8] Forecasting of Natural Gas Consumption in Poland Based on ARIMA-LSTM Hybrid Model
    Manowska, Anna
    Rybak, Aurelia
    Dylong, Artur
    Pielot, Joachim
    ENERGIES, 2021, 14 (24)
  • [9] An ARIMA-LSTM hybrid model for stock market prediction using live data
    Kulshreshtha S.
    Vijayalakshmi A.
    Journal of Engineering Science and Technology Review, 2020, 13 (04): : 117 - 123
  • [10] A Hybrid ARIMA-LSTM Model for Short-Term Vehicle Speed Prediction
    Wang, Wei
    Ma, Bin
    Guo, Xing
    Chen, Yong
    Xu, Yonghong
    ENERGIES, 2024, 17 (15)