Adaptive sliding mode control of dynamic system using RBF neural network

被引:198
|
作者
Fei, Juntao [1 ]
Ding, Hongfei [1 ]
机构
[1] Hohai Univ, Coll Comp & Informat, Jiangsu Key Lab Power Transmiss & Distribut Equip, Changzhou 213022, Peoples R China
基金
美国国家科学基金会;
关键词
Radial basis function; Adaptive neural network; Sliding mode control; NONLINEAR-SYSTEMS; TRACKING CONTROL;
D O I
10.1007/s11071-012-0556-2
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper presents a robust adaptive sliding mode control strategy using radial basis function (RBF) neural network (NN) for a class of time varying system in the presence of model uncertainties and external disturbance. Adaptive RBF neural network controller that can learn the unknown upper bound of model uncertainties and external disturbances is incorporated into the adaptive sliding mode control system in the same Lyapunov framework. The proposed adaptive sliding mode controller can on line update the estimates of system dynamics. The asymptotical stability of the closed-loop system, the convergence of the neural network weight-updating process, and the boundedness of the neural network weight estimation errors can be strictly guaranteed. Numerical simulation for a MEMS triaxial angular velocity sensor is investigated to verify the effectiveness of the proposed adaptive RBF sliding mode control scheme.
引用
收藏
页码:1563 / 1573
页数:11
相关论文
共 50 条
  • [1] Adaptive sliding mode control of dynamic system using RBF neural network
    Juntao Fei
    Hongfei Ding
    [J]. Nonlinear Dynamics, 2012, 70 : 1563 - 1573
  • [2] Adaptive sliding mode control using RBF Neural Network for nonlinear system
    Zhang, Ming-Guang
    Chen, Yu-Wu
    Wang, Peng
    Wang, Zhao-Gang
    [J]. PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2008, : 1860 - 1865
  • [3] Adaptive Sliding Mode Control for Dual Missile Using RBF Neural Network
    Kim, Seunghyun
    Cho, Dongsoo
    Kim, H. Jin
    [J]. 2014 14TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2014), 2014, : 1267 - 1271
  • [4] Hybrid Adaptive Integral Sliding Mode Speed Control of PMSM System Using RBF Neural Network
    Zhang, Bin
    Gao, Xinyan
    [J]. 2020 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS, ELECTRICAL DRIVES, AUTOMATION AND MOTION (SPEEDAM 2020), 2020, : 17 - 22
  • [5] Adaptive Global Sliding Mode Control for MEMS Gyroscope Using RBF Neural Network
    Chu, Yundi
    Fei, Juntao
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [6] RBF Neural Network Backstepping Sliding Mode Adaptive Control for Dynamic Pressure Cylinder Electrohydraulic Servo Pressure System
    Deng, Pan
    Zeng, Liangcai
    Liu, Yang
    [J]. COMPLEXITY, 2018,
  • [7] Adaptive Sliding mode Control Based on RBF Neural Network Approximation for Quadrotor
    Alqaisi, Walid Kh.
    Brahmi, Brahim
    Ghommam, Jawhar
    Saad, Maarouf
    Nerguizian, Vahe
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON ROBOTIC AND SENSORS ENVIRONMENTS (ROSE 2019), 2019, : 77 - 83
  • [8] RBF Neural Network Adaptive Sliding Mode Control of Rotary Stewart Platform
    Tan Van Nguyen
    Ha, Cheolkeun
    [J]. INTELLIGENT COMPUTING METHODOLOGIES, ICIC 2018, PT III, 2018, 10956 : 149 - 162
  • [9] Design of ROV Adaptive Sliding Mode Control System for Underwater Vehicle Based on RBF Neural Network
    Chen, Wei
    Hu, Shilin
    Wei, Qingyu
    [J]. PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 2976 - 2981
  • [10] Model reference adaptive sliding mode control using RBF neural network for active power filter
    Fang, Yunmei
    Fei, Juntao
    Ma, Kaiqi
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2015, 73 : 249 - 258