A K3 IN φ4

被引:94
|
作者
Brown, Francis [1 ]
Schnetz, Oliver [2 ]
机构
[1] CNRS, Inst Math Jussieu, F-75013 Paris, France
[2] Univ Erlangen Nurnberg, Dept Math, D-91058 Erlangen, Germany
基金
欧洲研究理事会;
关键词
MOTIVES;
D O I
10.1215/00127094-1644201
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Inspired by Feynman integral computations in quantum field theory, Kontsevich conjectured in 1997 that the number of points of graph hypersurfaces over a finite field F-q is a (quasi-) polynomial in q. Stembridge verified this for all graphs with at most twelve edges, but in 2003 Belkale and Brosnan showed that the counting functions are of general type for large graphs. In this paper we give a sufficient combinatorial criterion for a graph to have polynomial point-counts and construct some explicit counterexamples to Kontsevich's conjecture which are in phi(4) theory. Their counting functions are given modulo pq(2) (q = p(n)) by a modular form arising from a certain singular K3 surface.
引用
收藏
页码:1817 / 1862
页数:46
相关论文
共 50 条
  • [1] Twisted tensor products of K3 with K3
    Arce, Jack
    Guccione, Jorge A.
    Guccione, Juan J.
    Valqui, Christian
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (08) : 3614 - 3634
  • [2] ON THE CONSTITUTION OF K3[FEO4]
    HOPPE, R
    MADER, K
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 1990, 586 (07): : 115 - 124
  • [3] A LITHOSILICATE - K3LISIO4 = K3[LISIO4]
    HOFMANN, R
    HOPPE, R
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 1988, 560 (05): : 35 - 46
  • [4] ON K3 AND K4 OF THE INTEGERS MOD N
    AISBETT, J
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 6 (03) : 417 - 420
  • [5] On K3 Surface Quotients of K3 or Abelian Surfaces
    Garbagnati, Alice
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2017, 69 (02): : 338 - 372
  • [6] N=4 superconformal bootstrap of the K3 CFT
    Lin, Ying-Hsuan
    Shao, Shu-Heng
    Simmons-Duffin, David
    Wang, Yifan
    Yin, Xi
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (05):
  • [8] K4 AND K3 FORM FACTORS IN VENEZIANO MODEL
    CHAN, FCP
    CHAN, MY
    CHEN, H
    LETTERE AL NUOVO CIMENTO, 1970, 3 (07): : 203 - &
  • [9] K3 surfaces with a symplectic automorphism of order 4
    Piroddi, Benedetta
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (06) : 2302 - 2332
  • [10] ON K3(Z/PN) AND K4(Z/PN)
    AISBETT, JE
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 57 (329) : 1 - 90