Components of Micro- and Nanoelectronics Based on Silicon Structures for Cryogenic Temperatures

被引:0
|
作者
Druzhinin, Anatoly [1 ,2 ]
Ostrovskii, Igor [1 ,2 ]
Khoverko, Yuriy [1 ,2 ]
Yatsukhnenko, Serhii [1 ]
Druzhinin, Anatoly [1 ,2 ]
Ostrovskii, Igor [1 ,2 ]
Khoverko, Yuriy [1 ,2 ]
机构
[1] Lviv Polytech Natl Univ, Dept Semicond Elect, Lvov, Ukraine
[2] Int Lab High Magnet Fields & Low Temp, Wroclaw, Poland
关键词
cryogenic temperatures; impedance spectroscopy; polysilicon; capacity; inductance; circuit; SOI STRUCTURES; ON-INSULATOR; POLYSILICON; SENSORS; LAYERS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper deals with the solution of scientific and applied problems of development of elements of sensing equipment on the basis of silicon-on-insulator structures (SOI) doped with boron impurities. The paper presents the impedance measurements of electrical properties of polycrystalline silicon films (with concentration ranged from 2.4x10(18) cm(-3) to 1.7x10(20)cm(-3)) in the silicon-on-insulator structures obtained in the temperature range 4,2-70K in the frequency range from 10Hz to 250kHz as well as checking a possibility of their use as components of solid state electronics efficient at cryogenic temperatures. Based on silicon-on-insulator structures the discrete solid state elements (inductive, capacitive elements) and combined elements (oscillatory circuits) implemented by positioning technologies were developed. To design the oscillatory circuit a combination of two elements consisting of SOI-structure with a dopant concentration corresponding to the dielectric and metal side of metal-insulator transition (obtaining by double diffusion of boron impurities in polysilicon) was used.
引用
收藏
页码:147 / 150
页数:4
相关论文
共 50 条
  • [1] Nanostructured Silicon as a Multifunctional Material for Micro- and Nanoelectronics
    Luchenko, A., I
    Svezhentsova, K., V
    Melnichenko, M. M.
    2015 IEEE 35TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2015, : 145 - 147
  • [2] Method of Processing Quartz Accessories in the Manufacturing of the Structures of Micro- and Nanoelectronics
    Ismailov, T. A.
    Sarkarov, T. E.
    Shakhmaeva, A. R.
    Shangereeva, B. A.
    GLASS AND CERAMICS, 2019, 75 (11-12) : 488 - 490
  • [3] Method of Processing Quartz Accessories in the Manufacturing of the Structures of Micro- and Nanoelectronics
    T. A. Ismailov
    T. É. Sarkarov
    A. R. Shakhmaeva
    B. A. Shangereeva
    Glass and Ceramics, 2019, 75 : 488 - 490
  • [4] Electroless processes for micro- and nanoelectronics
    Shacham-Diamand, Y
    Inberg, A
    Sverdlov, Y
    Bogush, V
    Croitoru, N
    Moscovich, H
    Freeman, A
    ELECTROCHIMICA ACTA, 2003, 48 (20-22) : 2987 - 2996
  • [5] Computer Simulation of Experimental Methods to Investigate Materials and Structures of Micro- and Nanoelectronics
    Kholomina, T. A.
    Malchenko, S., I
    Gudzev, V. V.
    Rybin, N. B.
    2017 6TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 2017, : 309 - 313
  • [6] The use of films of metal-containing nanocomposites with a silicon-carbon matrix in thermal imitators of the components of micro- and nanoelectronics
    Nikolaenko, Yu. E.
    Melnyk, R. S.
    Rotner, S. M.
    Nikolaienko, T. Yu.
    2018 IEEE 38TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2018, : 36 - 39
  • [7] Diagnostics of plasma processes in micro- and nanoelectronics
    K. V. Rudenko
    High Energy Chemistry, 2009, 43 : 196 - 203
  • [8] Plasma etching: From micro- to nanoelectronics
    D. Shamiryan
    V. Paraschiv
    W. Boullart
    M. R. Baklanov
    High Energy Chemistry, 2009, 43 : 204 - 212
  • [9] The use of graphene in vacuum micro- and nanoelectronics
    Il'ichev, E. A.
    Kuleshov, A. E.
    Nabiev, R. M.
    Petrukhin, G. N.
    Rychkov, G. S.
    Sakharov, O. A.
    Chernyavskaya, E. S.
    TECHNICAL PHYSICS LETTERS, 2013, 39 (09) : 808 - 810
  • [10] The use of graphene in vacuum micro- and nanoelectronics
    E. A. Il’ichev
    A. E. Kuleshov
    R. M. Nabiev
    G. N. Petrukhin
    G. S. Rychkov
    O. A. Sakharov
    E. S. Chernyavskaya
    Technical Physics Letters, 2013, 39 : 808 - 810