A degenerate semilinear parabolic problem with a sink and a nonlocal source

被引:0
|
作者
Chan, C. Y. [1 ]
Chan, W. Y.
机构
[1] Univ SW Louisiana, Dept Math, Lafayette, LA 70504 USA
[2] SE Missouri State Univ, Dept Math, Cape Girardeau, MO 63701 USA
关键词
degenerate semilinear parabolic problem; sink; nonlocal source; existence; uniqueness;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Lambda < infinity, q and b be nonnegative constants, and sigma and a be positive constants. We consider the following degenerate semilinear parabolic first initial-boundary value problem, q b fa xi(qu)(tau) - u(xi xi) = -b/xi(2) u + sigma integral(a)(o) f(u(y, tau)) dy for 0 < xi < a, 0 < tau < Lambda, u(xi, 0) = u(0) (xi) for 0 <= xi <= a, u (0, tau) = 0 = u (a, tau) for 0 < tau < Lambda, where f and u(0) (x) are given nonnegative functions. Existence and uniqueness of the solution u are studied.
引用
收藏
页码:279 / 290
页数:12
相关论文
共 50 条