Variability of effects of spatial climate data aggregation on regional yield simulation by crop models

被引:44
|
作者
Hoffmann, H. [1 ]
Zhao, G. [1 ]
van Bussel, L. G. J. [1 ,2 ]
Enders, A. [1 ]
Specka, X. [3 ]
Sosa, C. [4 ]
Yeluripati, J. [5 ,17 ]
Tao, F. [6 ]
Constantin, J. [7 ,8 ]
Raynal, H. [7 ,8 ]
Teixeira, E. [9 ]
Grosz, B. [10 ]
Doro, L. [11 ]
Zhao, Z. [12 ]
Wang, E. [12 ]
Nendel, C. [3 ]
Kersebaum, K. C. [3 ]
Haas, E. [13 ]
Kiese, R. [13 ]
Klatt, S. [13 ]
Eckersten, H. [14 ]
Vanuytrecht, E. [15 ]
Kuhnert, M. [5 ]
Lewan, E. [4 ]
Rotter, R. [6 ]
Roggero, P. P. [11 ]
Wallach, D. [7 ,8 ]
Cammarano, D. [16 ]
Asseng, S. [16 ]
Krauss, G. [1 ]
Siebert, S. [1 ]
Gaiser, T. [1 ]
Ewert, F. [1 ]
机构
[1] Univ Bonn, Inst Crop Sci & Resource Conservat INRES, Crop Sci Grp, Katzenburgweg 5, D-53115 Bonn, Germany
[2] Wageningen Univ, Plant Prod Syst Grp, NL-6700 AK Wageningen, Netherlands
[3] Leibiz Ctr Agr Landscap Res, Inst Landscape Syst Anal, D-15374 Muncheberg, Germany
[4] Swedish Univ Agr Sci, Dept Soil & Environm, Biogeophys & Water Qual, S-75007 Uppsala, Sweden
[5] Univ Aberdeen, Sch Biol Sci, Inst Biol & Environm Sci, Aberdeen AB24 3UU, Scotland
[6] Natl Resources Inst Finland Luke, Climate Impacts Grp, Helsinki 00790, Finland
[7] INRA, UMR 1248, AGIR, F-31326 Auzeville, France
[8] INRA, UR0875 MIA T, F-31326 Auzeville, France
[9] New Zealand Inst Plant & Food Res Ltd, Canterbury Agr & Sci Ctr, Sustainable Prod Grp, Syst Modelling Team, Gerald St 7608, Lincoln, New Zealand
[10] Thuen Inst Climate Smart Agr, D-38116 Braunschweig, Germany
[11] Univ Sassari, Desertificat Res Grp, I-07100 Sassari, IT, Italy
[12] CSIRO Land & Water, Canberra, ACT, Australia
[13] Karlsruhe Inst Technol, Inst Meteorol & Climate Res Atmospher Environm Re, D-82467 Garmisch Partenkirchen, Germany
[14] Swedish Univ Agr Sci, Dept Crop Prod Ecol, S-75007 Uppsala, Sweden
[15] Katholieke Univ Leuven, Div Soil & Water Management, B-3001 Heverlee, BE, Belgium
[16] Univ Florida, Agr & Biol Engn Dept, Gainesville, FL 32611 USA
[17] James Hutton Inst, Craigiebuckler AB15 8QH, Aberdeen, Scotland
基金
芬兰科学院; 瑞典研究理事会; 英国生物技术与生命科学研究理事会;
关键词
Spatial aggregation effects; Crop simulation model; Input data; Scaling; Variability; Yield simulation; Model comparison; INPUT DATA; DATA RESOLUTION; N2O EMISSIONS; WINTER-WHEAT; SCALE; WATER; IMPACT; PRODUCTIVITY; WEATHER; SYSTEMS;
D O I
10.3354/cr01326
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Field-scale crop models are often applied at spatial resolutions coarser than that of the arable field. However, little is known about the response of the models to spatially aggregated climate input data and why these responses can differ across models. Depending on the model, regional yield estimates from large-scale simulations may be biased, compared to simulations with high-resolution input data. We evaluated this so-called aggregation effect for 13 crop models for the region of North Rhine-Westphalia in Germany. The models were supplied with climate data of 1 km resolution and spatial aggregates of up to 100 km resolution raster. The models were used with 2 crops (winter wheat and silage maize) and 3 production situations (potential, water-limited and nitrogen-water-limited growth) to improve the understanding of errors in model simulations related to data aggregation and possible interactions with the model structure. The most important climate variables identified in determining the model-specific input data aggregation on simulated yields were mainly related to changes in radiation (wheat) and temperature (maize). Additionally, aggregation effects were systematic, regardless of the extent of the effect. Climate input data aggregation changed the mean simulated regional yield by up to 0.2 t ha(-1), whereas simulated yields from single years and models differed considerably, depending on the data aggregation. This implies that large-scale crop yield simulations are robust against climate data aggregation. However, large-scale simulations can be systematically biased when being evaluated at higher temporal or spatial resolution depending on the model and its parameterization.
引用
收藏
页码:53 / 69
页数:17
相关论文
共 50 条
  • [1] Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations
    Hoffmann, Holger
    Zhao, Gang
    Asseng, Senthold
    Bindi, Marco
    Biernath, Christian
    Constantin, Julie
    Coucheney, Elsa
    Dechow, Rene
    Doro, Luca
    Eckersten, Henrik
    Gaiser, Thomas
    Grosz, Balazs
    Heinlein, Florian
    Kassie, Belay T.
    Kersebaum, Kurt-Christian
    Klein, Christian
    Kuhnert, Matthias
    Lewan, Elisabet
    Moriondo, Marco
    Nendel, Claas
    Priesack, Eckart
    Raynal, Helene
    Roggero, Pier P.
    Rotter, Reimund P.
    Siebert, Stefan
    Specka, Xenia
    Tao, Fulu
    Teixeira, Edmar
    Trombi, Giacomo
    Wallach, Daniel
    Weihermueller, Lutz
    Yeluripati, Jagadeesh
    Ewert, Frank
    PLOS ONE, 2016, 11 (04):
  • [2] Crop models capture the impacts of climate variability on corn yield
    Niyogi, Dev
    Liu, Xing
    Andresen, Jeff
    Song, Yang
    Jain, Atul K.
    Kellner, Olivia
    Takle, Eugene S.
    Doering, Otto C.
    GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (09) : 3356 - 3363
  • [3] Management and spatial resolution effects on yield and water balance at regional scale in crop models
    Constantin, Julie
    Raynal, Helene
    Casellas, Eric
    Hoffman, Holger
    Bindi, Marco
    Doro, Luca
    Eckersten, Henrik
    Gaiser, Thomas
    Grosz, Balasz
    Haas, Edwin
    Kersebaum, Kurt-Christian
    Klatt, Steffen
    Kuhnert, Matthias
    Lewan, Elisabet
    Maharjan, Ganga Ram
    Moriondo, Marco
    Nendel, Claas
    Roggero, Pier Paolo
    Specka, Xenia
    Trombi, Giacomo
    Villa, Ana
    Wang, Enli
    Weihermueller, Lutz
    Yeluripati, Jagadeesh
    Zhao, Zhigan
    Ewert, Frank
    Bergez, Jacques-Eric
    AGRICULTURAL AND FOREST METEOROLOGY, 2019, 275 : 184 - 195
  • [4] Regional importance of crop yield constraints: Linking simulation models and geostatistics to interpret spatial patterns
    Lobell, DB
    Ortiz-Monasterio, JI
    ECOLOGICAL MODELLING, 2006, 196 (1-2) : 173 - 182
  • [5] Spatial sampling of weather data for regional crop yield simulations
    van Bussel, Lenny G. J.
    Ewert, Frank
    Zhao, Gang
    Hoffmann, Holger
    Enders, Andreas
    Wallach, Daniel
    Asseng, Senthold
    Baigorria, Guillermo A.
    Basso, Bruno
    Biernath, Christian
    Cammarano, Davide
    Chryssanthacopoulos, James
    Constantin, Julie
    Elliott, Joshua
    Glotter, Michael
    Heinlein, Florian
    Kersebaum, Kurt-Christian
    Klein, Christian
    Nendel, Claas
    Priesack, Eckart
    Raynal, Helene
    Romero, Consuelo C.
    Rotter, Reimund P.
    Specka, Xenia
    Tao, Fulu
    AGRICULTURAL AND FOREST METEOROLOGY, 2016, 220 : 101 - 115
  • [6] Estimation of the effects of climate variability on crop yield in the Midwest USA
    Wang, Ruoyu
    Bowling, Laura C.
    Cherkauer, Keith A.
    AGRICULTURAL AND FOREST METEOROLOGY, 2016, 216 : 141 - 156
  • [7] THE IMPACT OF SPATIAL SOIL VARIABILITY ON SIMULATION OF REGIONAL MAIZE YIELD
    Sharda, V.
    Handyside, C.
    Chaves, B.
    McNider, R. T.
    Hoogenboom, G.
    TRANSACTIONS OF THE ASABE, 2017, 60 (06) : 2137 - 2148
  • [8] Are regional climate models relevant for crop yield prediction in West Africa?
    Oettli, Pascal
    Sultan, Benjamin
    Baron, Christian
    Vrac, Mathieu
    ENVIRONMENTAL RESEARCH LETTERS, 2011, 6 (01):
  • [9] The linkage of regional climate models to crop models
    Hanley, DE
    Jagtap, S
    LaRow, TE
    Jones, JW
    Cocke, S
    Zierden, D
    O'Brien, JJ
    THIRD SYMPOSIUM ON ENVIRONMENTAL APPLICATIONS: FACILITATING THE USE OF ENVIRONMENTAL INFORMATION, 2002, : 134 - 139
  • [10] Examples of strategies to analyze spatial and temporal yield variability using crop models
    Batchelor, WD
    Basso, B
    Paz, JO
    EUROPEAN JOURNAL OF AGRONOMY, 2002, 18 (1-2) : 141 - 158