Comparative performance evaluation of classifiers for Facial Expression Recognition

被引:0
|
作者
Lampropoulos, Aristomenis S. [1 ]
Stathopoulou, Ioanna-Ourania [1 ]
Tsihrintzis, George A. [1 ]
机构
[1] Univ Piraeus, Dept Informat, Piraeus 18534, Greece
来源
NEW DIRECTIONS IN INTELLIGENT INTERACTIVE MULTIMEDIA SYSTEMS AND SERVICES - 2 | 2009年 / 226卷
关键词
AUTOMATIC-ANALYSIS; SYSTEM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Towards building new, friendlier human-computer interaction and multimedia interactive services systems, we developed a image processing system which consists of the face detection module, which first determines automatically whether or not there are any faces in given images and, if so, returns the location and extent of each face and a facial expression classification module, which allow the classification of several facial expressions. In order to increase the accuracy of the facial expression classification module, we developed four different classifiers, namely:(1) Multilayer perceptrons, (2) Radial basis networks, (3) K-nearest neighbor classifiers and, (4) Support vector machines. In this paper we make an evaluation of performance of these classifiers versus the human's expression recognition performance for five expression: 'neutral', 'happy', 'surprised', 'angry' and 'disgusted'.
引用
收藏
页码:253 / 263
页数:11
相关论文
共 50 条
  • [1] Comparative Performance Evaluation of Artificial Neural Network-Based vs. Human Facial Expression Classifiers for Facial Expression Recognition
    Stathopoulou, I. -O
    Tsihrintzis, G. A.
    NEW DIRECTIONS IN INTELLIGENT INTERACTIVE MULTIMEDIA, 2008, 142 : 55 - 65
  • [2] A Comparative Study of Local Descriptors and Classifiers for Facial Expression Recognition
    Badi Mame, Antoine
    Tapamo, Jules-Raymond
    APPLIED SCIENCES-BASEL, 2022, 12 (23):
  • [3] Performance Analysis of Classifiers for Facial Expression Recognition under Constrained Settings
    Alphonse, A. Sherly
    Dejey
    2016 INTERNATIONAL CONFERENCE ON COMPUTING TECHNOLOGIES AND INTELLIGENT DATA ENGINEERING (ICCTIDE'16), 2016,
  • [4] Multiple classifiers fusion for facial expression recognition
    Chuanjie Zhang
    Changming Zhu
    Granular Computing, 2022, 7 : 171 - 181
  • [5] Multiple classifiers fusion for facial expression recognition
    Zhang, Chuanjie
    Zhu, Changming
    GRANULAR COMPUTING, 2022, 7 (01) : 171 - 181
  • [6] FACIAL EXPRESSION RECOGNITION USING ENSEMBLE OF CLASSIFIERS
    Zavaschi, T. H. H.
    Koerich, A. L.
    Oliveira, L. E. S.
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 1489 - 1492
  • [7] Fusion of feature sets and classifiers for facial expression recognition
    Zavaschi, Thiago H. H.
    Britto, Alceu S., Jr.
    Oliveira, Luiz E. S.
    Koerich, Alessandro L.
    EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (02) : 646 - 655
  • [8] FACIAL EXPRESSION RECOGNITION USING CONSPICUOUS FEATURES SELECTION AND COMPARISON OF THE PERFORMANCE OF DIFFERENT CLASSIFIERS
    Maghami, Mahsa
    Araabi, Babak N.
    Zoroofi, Reza Aghaeizade
    Shiva, Mohsen
    ICSPC: 2007 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS, VOLS 1-3, PROCEEDINGS, 2007, : 904 - 907
  • [9] Performance Evaluation of Ensemble Learning Methods for Facial Expression Recognition
    Sagbas, Ensar Arif
    Ugur, Aybars
    Korukoglu, Serdar
    2019 INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS CONFERENCE (ASYU), 2019, : 554 - 558
  • [10] Recognition and Intensity Estimation of Facial Expression Using Ensemble Classifiers
    Nomiya, Hiroki
    Sakauet, Shota
    Hochint, Teruhisa
    2016 IEEE/ACIS 15TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS), 2016, : 825 - 830