Combinatorial aspects of classical resolution of singularities

被引:4
|
作者
Molina-Samper, Beatriz [1 ]
机构
[1] Univ Valladolid, Fac Ciencias, Dept Algebra Anal Matemat Geometria & Topol, Campus Miguel Delibes,Paseo Belen 7, E-47011 Valladolid, Spain
关键词
Polyhedra systems; Maximal contact; Reduction of singularities; NEWTON POLYHEDRA; FOLIATIONS;
D O I
10.1007/s13398-018-0583-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe combinatorial aspects of classical resolution of singularities that are free of characteristic and can be applied to singular foliations and vector fields as well as to functions and varieties. In particular, we give a combinatorial version of Hironaka's maximal contact theory in terms of characteristic polyhedra systems and we show the global existence of maximal contact in this context.
引用
收藏
页码:3931 / 3948
页数:18
相关论文
共 50 条
  • [1] Combinatorial aspects of classical resolution of singularities
    Beatriz Molina-Samper
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 3931 - 3948
  • [2] Classical resolution of singularities in dilaton cosmologies
    Bergshoeff, EA
    Collinucci, A
    Roest, D
    Russo, JG
    Townsend, PK
    CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (22) : 4763 - 4781
  • [3] Classical resolution of black hole singularities in arbitrary dimension
    Bazeia, D.
    Losano, L.
    Olmo, Gonzalo J.
    Rubiera-Garcia, D.
    Sanchez-Puente, A.
    PHYSICAL REVIEW D, 2015, 92 (04):
  • [4] Classical resolution of black hole singularities via wormholes
    Gonzalo J. Olmo
    D. Rubiera-Garcia
    A. Sanchez-Puente
    The European Physical Journal C, 2016, 76
  • [5] Classical resolution of black hole singularities via wormholes
    Olmo, Gonzalo J.
    Rubiera-Garcia, D.
    Sanchez-Puente, A.
    EUROPEAN PHYSICAL JOURNAL C, 2016, 76 (03):
  • [6] A combinatorial approach to the classification of resolution graphs of weighted homogeneous plane curve singularities
    Binyamin, Muhammad Ahsan
    Siddiqui, Hafiz Muhammad Afzal
    Shehzad, Amir
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (04): : 805 - 812
  • [7] COMBINATORIAL INVARIANTNESS OF TORIC SINGULARITIES
    DEMUSHKIN, AS
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1982, (02): : 80 - 87
  • [8] Origin of classical singularities
    Heller, M
    Sasin, W
    GENERAL RELATIVITY AND GRAVITATION, 1999, 31 (04) : 555 - 570
  • [9] Origin of Classical Singularities
    Michael Heller
    Wieslaw Sasin
    General Relativity and Gravitation, 1999, 31 : 555 - 570
  • [10] A Combinatorial Approach to Singularities of Normal Surfaces
    Manfredini, Sandro
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2003, 2 (03) : 461 - 491